Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 21
Filtrar
1.
J Infect Dis ; 227(7): 838-849, 2023 04 12.
Artículo en Inglés | MEDLINE | ID: mdl-35668700

RESUMEN

BACKGROUND: Longer-term humoral responses to 2-dose coronavirus disease 2019 (COVID-19) vaccines remain incompletely characterized in people living with human immunodeficiency virus (HIV) (PLWH), as do initial responses to a third dose. METHODS: We measured antibodies against the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) spike protein receptor-binding domain, angiotensin-converting enzyme 2 (ACE2) displacement, and viral neutralization against wild-type and Omicron strains up to 6 months after 2-dose vaccination, and 1 month after the third dose, in 99 PLWH receiving suppressive antiretroviral therapy and 152 controls. RESULTS: Although humoral responses naturally decline after 2-dose vaccination, we found no evidence of lower antibody concentrations or faster rates of antibody decline in PLWH compared with controls after accounting for sociodemographic, health, and vaccine-related factors. We also found no evidence of poorer viral neutralization in PLWH after 2 doses, nor evidence that a low nadir CD4+ T-cell count compromised responses. Post-third-dose humoral responses substantially exceeded post-second-dose levels, though Omicron-specific responses were consistently weaker than responses against wild-type virus. Nevertheless, post-third-dose responses in PLWH were comparable to or higher than controls. An mRNA-1273 third dose was the strongest consistent correlate of higher post-third-dose responses. CONCLUSION: PLWH receiving suppressive antiretroviral therapy mount strong antibody responses after 2- and 3-dose COVID-19 vaccination. Results underscore the immune benefits of third doses in light of Omicron.


Asunto(s)
COVID-19 , Infecciones por VIH , Humanos , VIH , Vacunas contra la COVID-19 , COVID-19/prevención & control , SARS-CoV-2 , Anticuerpos , Vacunación , Infecciones por VIH/tratamiento farmacológico , Anticuerpos Antivirales
2.
J Infect Dis ; 225(7): 1129-1140, 2022 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-34888688

RESUMEN

BACKGROUND: The magnitude and durability of immune responses to coronavirus disease 2019 (COVID-19) mRNA vaccines remain incompletely characterized in the elderly. METHODS: Anti-spike receptor-binding domain (RBD) antibodies, angiotensin-converting enzyme 2 (ACE2) competition, and virus neutralizing activities were assessed in plasma from 151 health care workers and older adults (range, 24-98 years of age) 1 month following the first vaccine dose, and 1 and 3 months following the second dose. RESULTS: Older adults exhibited significantly weaker responses than younger health care workers for all humoral measures evaluated and at all time points tested, except for ACE2 competition activity after 1 vaccine dose. Moreover, older age remained independently associated with weaker responses even after correction for sociodemographic factors, chronic health condition burden, and vaccine-related variables. By 3 months after the second dose, all humoral responses had declined significantly in all participants, and remained significantly lower among older adults, who also displayed reduced binding antibodies and ACE2 competition activity towards the Delta variant. CONCLUSIONS: Humoral responses to COVID-19 mRNA vaccines are significantly weaker in older adults, and antibody-mediated activities in plasma decline universally over time. Older adults may thus remain at elevated risk of infection despite vaccination.


Asunto(s)
Vacunas contra la COVID-19 , COVID-19 , Anciano , Anticuerpos Neutralizantes , Anticuerpos Antivirales , COVID-19/prevención & control , Humanos , Inmunidad Humoral , Lactante , ARN Mensajero , SARS-CoV-2 , Vacunas Sintéticas , Vacunas de ARNm
3.
J Infect Dis ; 226(6): 983-994, 2022 09 21.
Artículo en Inglés | MEDLINE | ID: mdl-35543278

RESUMEN

BACKGROUND: Third coronavirus disease 2019 (COVID-19) vaccine doses are broadly recommended, but immunogenicity data remain limited, particularly in older adults. METHODS: We measured circulating antibodies against the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) spike protein receptor-binding domain, ACE2 displacement, and virus neutralization against ancestral and omicron (BA.1) strains from prevaccine up to 1 month following the third dose, in 151 adults aged 24-98 years who received COVID-19 mRNA vaccines. RESULTS: Following 2 vaccine doses, humoral immunity was weaker, less functional, and less durable in older adults, where a higher number of chronic health conditions was a key correlate of weaker responses and poorer durability. One month after the third dose, antibody concentrations and function exceeded post-second-dose levels, and responses in older adults were comparable in magnitude to those in younger adults at this time. Humoral responses against omicron were universally weaker than against the ancestral strain after both the second and third doses. Nevertheless, after 3 doses, anti-omicron responses in older adults reached equivalence to those in younger adults. One month after 3 vaccine doses, the number of chronic health conditions, but not age, was the strongest consistent correlate of weaker humoral responses. CONCLUSIONS: Results underscore the immune benefits of third COVID-19 vaccine doses, particularly in older adults.


Asunto(s)
Vacunas contra la COVID-19 , COVID-19 , Anciano , Enzima Convertidora de Angiotensina 2 , Anticuerpos Neutralizantes , Anticuerpos Antivirales , COVID-19/prevención & control , Humanos , ARN Mensajero , SARS-CoV-2 , Glicoproteína de la Espiga del Coronavirus , Vacunas Sintéticas , Vacunas de ARNm
4.
Int J Urol ; 25(7): 684-689, 2018 07.
Artículo en Inglés | MEDLINE | ID: mdl-29788547

RESUMEN

OBJECTIVES: To examine the impact on quality of life of recurrent acute uncomplicated urinary tract infection among premenopausal Singaporean women, and to determine the risk factors for lower quality of life among these patients. METHODS: A total of 85 patients with recurrent acute uncomplicated urinary tract infection who were referred to the Urology Department at the National University Hospital, Singapore, were prospectively recruited over a 3-year period to complete the validated Short Form 36 Health Survey version 1. In addition, demographic and clinical details including symptomology and medical history were analyzed for factors impacting quality of life. Short Form 36 Health Survey version 1 results were compared with published population norms. RESULTS: After adjusting for age, gender and race, recurrent acute uncomplicated urinary tract infection patients had significantly lower quality of life on seven out of eight Short Form 36 Health Survey version 1 domains when compared with age-, gender- and race-adjusted population norms for Singapore. Among those with recurrent acute uncomplicated urinary tract infection, those who also reported caffeine consumption had significantly lower Short Form 36 Health Survey version 1 scores than those who did not. Those who reported chronic constipation also had consistently lower Short Form 36 Health Survey version 1 scores across all domains. CONCLUSIONS: Recurrent acute uncomplicated urinary tract infection has a negative impact on the quality of life of premenopausal, otherwise healthy women. Recurrent acute uncomplicated urinary tract infection patients who also have chronic constipation or consume caffeine have lower quality of life than those who do not. More studies are required to understand the relationships between these common problems and risk factors.


Asunto(s)
Estreñimiento/psicología , Calidad de Vida , Infecciones Urinarias/psicología , Enfermedad Aguda/epidemiología , Enfermedad Aguda/terapia , Adulto , Antibacterianos/uso terapéutico , Cafeína/efectos adversos , Café/efectos adversos , Comorbilidad , Estreñimiento/epidemiología , Conducta Alimentaria , Femenino , Humanos , Premenopausia , Recurrencia , Factores de Riesgo , Singapur/epidemiología , Encuestas y Cuestionarios/estadística & datos numéricos , Infecciones Urinarias/tratamiento farmacológico , Infecciones Urinarias/epidemiología , Infecciones Urinarias/patología
5.
Antiviral Res ; 225: 105869, 2024 05.
Artículo en Inglés | MEDLINE | ID: mdl-38548023

RESUMEN

SARS-CoV-2 Omicron subvariants with increased transmissibility and immune evasion are spreading globally with alarming persistence. Whether the mutations and evolution of spike (S) Omicron subvariants alter the viral hijacking of human TMPRSS2 for viral entry remains to be elucidated. This is particularly important to investigate because of the large number and diversity of mutations of S Omicron subvariants reported since the emergence of BA.1. Here we report that human TMPRSS2 is a molecular determinant of viral entry for all the Omicron clinical isolates tested in human lung cells, including ancestral Omicron subvariants (BA.1, BA.2, BA.5), contemporary Omicron subvariants (BQ.1.1, XBB.1.5, EG.5.1) and currently circulating Omicron BA.2.86. First, we used a co-transfection assay to demonstrate the endoproteolytic cleavage by TMPRSS2 of spike Omicron subvariants. Second, we found that N-0385, a highly potent TMPRSS2 inhibitor, is a robust entry inhibitor of virus-like particles harbouring the S protein of Omicron subvariants. Third, we show that N-0385 exhibits nanomolar broad-spectrum antiviral activity against live Omicron subvariants in human Calu-3 lung cells and primary patient-derived bronchial epithelial cells. Interestingly, we found that N-0385 is 10-20 times more potent than the repositioned TMPRSS2 inhibitor, camostat, against BA.5, EG.5.1, and BA.2.86. We further found that N-0385 shows broad synergistic activity with clinically approved direct-acting antivirals (DAAs), i.e., remdesivir and nirmatrelvir, against Omicron subvariants, demonstrating the potential therapeutic benefits of a multi-targeted treatment based on N-0385 and DAAs.


Asunto(s)
Benzotiazoles , COVID-19 , Sulfonamidas , Humanos , Anticuerpos Neutralizantes , Anticuerpos Antivirales , Antivirales , SARS-CoV-2 , Serina Endopeptidasas
6.
Emerg Microbes Infect ; 12(1): 2195020, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-36951188

RESUMEN

SARS-CoV-2, the causative virus of COVID-19, continues to threaten global public health. COVID-19 is a multi-organ disease, causing not only respiratory distress, but also extrapulmonary manifestations, including gastrointestinal symptoms with SARS-CoV-2 RNA shedding in stool long after respiratory clearance. Despite global vaccination and existing antiviral treatments, variants of concern are still emerging and circulating. Of note, new Omicron BA.5 sublineages both increasingly evade neutralizing antibodies and demonstrate an increased preference for entry via the endocytic entry route. Alternative to direct-acting antivirals, host-directed therapies interfere with host mechanisms hijacked by viruses, and enhance cell-mediated resistance with a reduced likelihood of drug resistance development. Here, we demonstrate that the autophagy-blocking therapeutic berbamine dihydrochloride robustly prevents SARS-CoV-2 acquisition by human intestinal epithelial cells via an autophagy-mediated BNIP3 mechanism. Strikingly, berbamine dihydrochloride exhibited pan-antiviral activity against Omicron subvariants BA.2 and BA.5 at nanomolar potency, providing a proof of concept for the potential for targeting autophagy machinery to thwart infection of current circulating SARS-CoV-2 subvariants. Furthermore, we show that autophagy-blocking therapies limited virus-induced damage to intestinal barrier function, affirming the therapeutic relevance of autophagy manipulation to avert the intestinal permeability associated with acute COVID-19 and post-COVID-19 syndrome. Our findings underscore that SARS-CoV-2 exploits host autophagy machinery for intestinal dissemination and indicate that repurposed autophagy-based antivirals represent a pertinent therapeutic option to boost protection and ameliorate disease pathogenesis against current and future SARS-CoV-2 variants of concern.


Asunto(s)
COVID-19 , Hepatitis C Crónica , Humanos , SARS-CoV-2 , Antivirales/farmacología , Síndrome Post Agudo de COVID-19 , ARN Viral , Anticuerpos Neutralizantes , Autofagia , Anticuerpos Antivirales , Glicoproteína de la Espiga del Coronavirus , Proteínas de la Membrana
7.
Org Lett ; 25(26): 4825-4829, 2023 07 07.
Artículo en Inglés | MEDLINE | ID: mdl-37358030

RESUMEN

The protein kinase C-activating sponge natural product alotaketal C (1) potently inhibits the infection of human Calu-3 lung cells by SARS-CoV-2 Omicron BA.1 and BA.5 variants. Simplified analogs of 1 have been synthesized and tested for anti-SARS-CoV-2 activity providing SAR data for the antiviral pharmacophore of 1. Analogs 19 and 23, which are missing the C-11 substituents in 1 and have modified C-13 appendages, are ∼2- to 7-fold more potent than 1 and have equal or larger selectivity indices.


Asunto(s)
Productos Biológicos , COVID-19 , Humanos , SARS-CoV-2 , Antivirales/farmacología , Farmacóforo
8.
AIDS ; 37(5): F11-F18, 2023 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-36789806

RESUMEN

OBJECTIVE: Limited data exist regarding the immune benefits of fourth COVID-19 vaccine doses in people with HIV (PWH) receiving antiretroviral therapy (ART), particularly now that most have experienced a SARS-CoV-2 infection. We quantified wild-type, Omicron-BA.5 and Omicron-BQ.1-specific neutralization up to 1 month post-fourth COVID-19 vaccine dose in 63 (19 SARS-CoV-2-naive and 44 SARS-CoV-2-experienced) PWH. DESIGN: A longitudinal observational cohort. METHODS: Quantification of wild-type-, Omicron-BA.5, and Omicron-BQ.1-specific neutralization using live virus assays. RESULTS: Participants received monovalent (44%) and bivalent (56%) mRNA fourth doses. In COVID-19-naive PWH, fourth doses enhanced wild-type and Omicron-BA.5-specific neutralization modestly above three-dose levels ( P  = 0.1). In COVID-19-experienced PWH, fourth doses enhanced wild-type specific neutralization modestly ( P  = 0.1) and BA.5-specific neutralization substantially ( P  = 0.002). Consistent with humoral benefits of 'hybrid' immunity, COVID-19-experienced PWH exhibited the highest neutralization post-fourth dose, wherein those with Omicron-era infections displayed higher wild-type specific ( P  = 0.04) but similar BA.5 and BQ.1-specific neutralization than those with pre-Omicron-era infections. Nevertheless, BA.5-specific neutralization was significantly below wild-type in everyone regardless of COVID-19 experience, with BQ.1-specific neutralization lower still (both P  < 0.0001). In multivariable analyses, fourth dose valency did not affect neutralization magnitude. Rather, an mRNA-1273 fourth dose (versus a BNT162b2 one) was the strongest correlate of wild-type specific neutralization, while prior COVID-19, regardless of pandemic era, was the strongest correlate of BA.5 and BQ.1-specific neutralization post-fourth dose. CONCLUSION: Fourth COVID-19 vaccine doses, irrespective of valency, benefit PWH regardless of prior SARS-CoV-2 infection. Results support recommendations that all adults receive a fourth COVID-19 vaccine dose within 6 months of their third dose (or their most recent SARS-CoV-2 infection).


Asunto(s)
COVID-19 , Infecciones por VIH , Adulto , Humanos , Anticuerpos Neutralizantes , Anticuerpos Antivirales , Vacuna BNT162 , COVID-19/prevención & control , Vacunas contra la COVID-19 , Infecciones por VIH/complicaciones , Infecciones por VIH/tratamiento farmacológico , SARS-CoV-2
9.
Open Forum Infect Dis ; 10(3): ofad073, 2023 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-36910697

RESUMEN

Background: Longer-term immune response data after 3 doses of coronavirus disease 2019 (COVID-19) mRNA vaccine remain limited, particularly among older adults and after Omicron breakthrough infection. Methods: We quantified wild-type- and Omicron-specific serum immunoglobulin (Ig)G levels, angiotensin-converting enzyme 2 displacement activities, and live virus neutralization up to 6 months after third dose in 116 adults aged 24-98 years who remained COVID-19 naive or experienced their first severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection during this time. Results: Among the 78 participants who remained COVID-19 naive throughout follow up, wild-type- and Omicron-BA.1-specific IgG concentrations were comparable between younger and older adults, although BA.1-specific responses were consistently significantly lower than wild-type-specific responses in both groups. Wild-type- and BA.1-specific IgG concentrations declined at similar rates in COVID-19-naive younger and older adults, with median half-lives ranging from 69 to 78 days. Antiviral antibody functions declined substantially over time in COVID-19-naive individuals, particularly in older adults: by 6 months, BA.1-specific neutralization was undetectable in 96% of older adults, versus 56% of younger adults. Severe acute respiratory syndrome coronavirus 2 infection, experienced by 38 participants, boosted IgG levels and neutralization above those induced by vaccination alone. Nevertheless, BA.1-specific neutralization remained significantly lower than wild-type, with BA.5-specific neutralization lower still. Higher Omicron BA.1-specific neutralization 1 month after third dose was an independent correlate of lower SARS-CoV-2 infection risk. Conclusions: Results underscore the immune benefits of the third COVID-19 mRNA vaccine dose in adults of all ages and identify vaccine-induced Omicron-specific neutralization as a correlate of protective immunity. Systemic antibody responses and functions however, particularly Omicron-specific neutralization, decline rapidly in COVID-19-naive individuals, particularly in older adults, supporting the need for additional booster doses.

10.
AIDS ; 37(5): 709-721, 2023 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-36545783

RESUMEN

BACKGROUND: Limited data exist regarding longer term antibody responses following three-dose coronavirus disease 2019 (COVID-19) vaccination, and the impact of a first SARS-CoV-2 infection during this time, in people with HIV (PWH) receiving suppressive antiretroviral therapy (ART). We quantified wild-type-specific, Omicron BA.1-specific and Omicron BA.5-specific responses up to 6 months post-third dose in 64 PWH and 117 controls who remained COVID-19-naive or experienced their first SARS-CoV-2 infection during this time. DESIGN: Longitudinal observational cohort. METHODS: We quantified wild-type-specific and Omicron-specific anti-Spike receptor-binding domain IgG concentrations, ACE2 displacement activities and live virus neutralization at 1, 3 and 6 months post-third vaccine dose. RESULTS: Third doses boosted all antibody measures above two-dose levels, but BA.1-specific responses remained significantly lower than wild-type-specific ones, with BA.5-specific responses lower still. Serum IgG concentrations declined at similar rates in COVID-19-naive PWH and controls post-third dose (median wild-type-specific and BA.1-specific half-lives were between 66 and 74 days for both groups). Antibody function also declined significantly yet comparably between groups: 6 months post-third dose, BA.1-specific neutralization was undetectable in more than 80% of COVID-19 naive PWH and more than 90% of controls. Breakthrough SARS-CoV-2 infection boosted antibody concentrations and function significantly above vaccine-induced levels in both PWH and controls, though BA.5-specific neutralization remained significantly poorer than BA.1 even post-breakthrough. CONCLUSION: Following three-dose COVID-19 vaccination, antibody response durability in PWH receiving ART is comparable with controls. PWH also mounted strong responses to breakthrough infection. Due to temporal response declines, however, COVID-19-naive individuals, regardless of HIV status, would benefit from a fourth dose within 6 months of their third.


Asunto(s)
COVID-19 , Infecciones por VIH , Humanos , Formación de Anticuerpos , Vacunas contra la COVID-19 , COVID-19/prevención & control , Infecciones por VIH/complicaciones , Infecciones por VIH/tratamiento farmacológico , SARS-CoV-2 , Vacunación , Inmunoglobulina G , Anticuerpos Antivirales , Anticuerpos Neutralizantes
11.
Emerg Microbes Infect ; 12(2): 2246594, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37555275

RESUMEN

Antivirals with broad coronavirus activity are important for treating high-risk individuals exposed to the constantly evolving SARS-CoV-2 variants of concern (VOCs) as well as emerging drug-resistant variants. We developed and characterized a novel class of active-site-directed 3-chymotrypsin-like protease (3CLpro) inhibitors (C2-C5a). Our lead direct-acting antiviral (DAA), C5a, is a non-covalent, non-peptide with a dissociation constant of 170 nM against recombinant SARS-CoV-2 3CLpro. The compounds C2-C5a exhibit broad-spectrum activity against Omicron subvariants (BA.5, BQ.1.1, and XBB.1.5) and seasonal human coronavirus-229E infection in human cells. Notably, C5a has median effective concentrations of 30-50 nM against BQ.1.1 and XBB.1.5 in two different human cell lines. X-ray crystallography has confirmed the unique binding modes of C2-C5a to the 3CLpro, which can limit virus cross-resistance to emerging Paxlovid-resistant variants. We tested the effect of C5a with two of our newly discovered host-directed antivirals (HDAs): N-0385, a TMPRSS2 inhibitor, and bafilomycin D (BafD), a human vacuolar H+-ATPase [V-ATPase] inhibitor. We demonstrated a synergistic action of C5a in combination with N-0385 and BafD against Omicron BA.5 infection in human Calu-3 lung cells. Our findings underscore that a SARS-CoV-2 multi-targeted treatment for circulating Omicron subvariants based on DAAs (C5a) and HDAs (N-0385 or BafD) can lead to therapeutic benefits by enhancing treatment efficacy. Furthermore, the high-resolution structures of SARS-CoV-2 3CLpro in complex with C2-C5a will facilitate future rational optimization of our novel broad-spectrum active-site-directed 3C-like protease inhibitors.


Asunto(s)
COVID-19 , Hepatitis C Crónica , Humanos , Inhibidores de Proteasas/farmacología , Antivirales/farmacología , SARS-CoV-2
12.
Antiviral Res ; 209: 105484, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36503013

RESUMEN

The COVID-19 pandemic, caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), remains a global public health crisis. The reduced efficacy of therapeutic monoclonal antibodies against emerging SARS-CoV-2 variants of concern (VOCs), such as omicron BA.5 subvariants, has underlined the need to explore a novel spectrum of antivirals that are effective against existing and evolving SARS-CoV-2 VOCs. To address the need for novel therapeutic options, we applied cell-based high-content screening to a library of natural products (NPs) obtained from plants, fungi, bacteria, and marine sponges, which represent a considerable diversity of chemical scaffolds. The antiviral effect of 373 NPs was evaluated using the mNeonGreen (mNG) reporter SARS-CoV-2 virus in a lung epithelial cell line (Calu-3). The screening identified 26 NPs with half-maximal effective concentrations (EC50) below 50 µM against mNG-SARS-CoV-2; 16 of these had EC50 values below 10 µM and three NPs (holyrine A, alotaketal C, and bafilomycin D) had EC50 values in the nanomolar range. We demonstrated the pan-SARS-CoV-2 activity of these three lead antivirals against SARS-CoV-2 highly transmissible Omicron subvariants (BA.5, BA.2 and BA.1) and highly pathogenic Delta VOCs in human Calu-3 lung cells. Notably, holyrine A, alotaketal C, and bafilomycin D, are potent nanomolar inhibitors of SARS-CoV-2 Omicron subvariants BA.5 and BA.2. The pan-SARS-CoV-2 activity of alotaketal C [protein kinase C (PKC) activator] and bafilomycin D (V-ATPase inhibitor) suggest that these two NPs are acting as host-directed antivirals (HDAs). Future research should explore whether PKC regulation impacts human susceptibility to and the severity of SARS-CoV-2 infection, and it should confirm the important role of human V-ATPase in the VOC lifecycle. Interestingly, we observed a synergistic action of bafilomycin D and N-0385 (a highly potent inhibitor of human TMPRSS2 protease) against Omicron subvariant BA.2 in human Calu-3 lung cells, which suggests that these two highly potent HDAs are targeting two different mechanisms of SARS-CoV-2 entry. Overall, our study provides insight into the potential of NPs with highly diverse chemical structures as valuable inspirational starting points for developing pan-SARS-CoV-2 therapeutics and for unravelling potential host factors and pathways regulating SARS-CoV-2 VOC infection including emerging omicron BA.5 subvariants.


Asunto(s)
Productos Biológicos , COVID-19 , Humanos , SARS-CoV-2 , Pandemias , Adenosina Trifosfatasas , Antivirales/farmacología , Antivirales/uso terapéutico , Productos Biológicos/farmacología , Glicoproteína de la Espiga del Coronavirus
13.
Front Immunol ; 13: 947021, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36148225

RESUMEN

SARS-CoV-2 Omicron infections are common among individuals who are vaccinated or have recovered from prior variant infection, but few reports have immunologically assessed serial Omicron infections. We characterized SARS-CoV-2 humoral responses in an individual who acquired laboratory-confirmed Omicron BA.1.15 ten weeks after a third dose of BNT162b2, and BA.2 thirteen weeks later. Responses were compared to 124 COVID-19-naive vaccinees. One month post-second and -third vaccine doses, the participant's wild-type and BA.1-specific IgG, ACE2-displacement and virus neutralization activities were average for a COVID-19-naive triple-vaccinated individual. BA.1 infection boosted the participant's responses to the cohort ≥95th percentile, but even this strong "hybrid" immunity failed to protect against BA.2. Reinfection increased BA.1 and BA.2-specific responses only modestly. Though vaccines clearly protect against severe disease, results highlight the continued importance of maintaining additional protective measures to counteract the immune-evasive Omicron variant, particularly as vaccine-induced immune responses naturally decline over time.


Asunto(s)
COVID-19 , Vacunas Virales , Enzima Convertidora de Angiotensina 2 , Anticuerpos Antivirales , Vacuna BNT162 , COVID-19/prevención & control , Vacunas contra la COVID-19 , Humanos , Inmunoglobulina G , SARS-CoV-2 , Vacunación
14.
medRxiv ; 2022 Feb 21.
Artículo en Inglés | MEDLINE | ID: mdl-35018381

RESUMEN

BACKGROUND: Third COVID-19 vaccine doses are broadly recommended, but immunogenicity data remain limited, particularly in older adults. METHODS: We measured circulating antibodies against the SARS-CoV-2 spike protein receptor-binding domain, ACE2 displacement, and virus neutralization against ancestral and Omicron (BA.1) strains from pre-vaccine up to one month following the third dose, in 151 adults aged 24-98 years who received COVID-19 mRNA vaccines. RESULTS: Following two vaccine doses, humoral immunity was weaker, less functional and less durable in older adults, where a higher number of chronic health conditions was a key correlate of weaker responses and poorer durability. Third doses boosted antibody binding and function to higher levels than second-doses, and induced responses in older adults that were comparable in magnitude to those in younger adults. Humoral responses against Omicron were universally weaker than against the ancestral strain after both second and third doses; nevertheless, after three doses, anti-Omicron responses in older adults reached equivalence to those in younger adults. After three vaccine doses, the number of chronic health conditions, but not age per se, was the strongest consistent correlate of weaker humoral responses. CONCLUSION: Results underscore the immune benefits of third COVID-19 vaccine doses, particularly in older adults.

15.
medRxiv ; 2022 Mar 23.
Artículo en Inglés | MEDLINE | ID: mdl-35350205

RESUMEN

Background: Longer-term humoral responses to two-dose COVID-19 vaccines remain incompletely characterized in people living with HIV (PLWH), as do initial responses to a third dose. Methods: We measured antibodies against the SARS-CoV-2 spike protein receptor-binding domain, ACE2 displacement and viral neutralization against wild-type and Omicron strains up to six months following two-dose vaccination, and one month following the third dose, in 99 PLWH receiving suppressive antiretroviral therapy, and 152 controls. Results: Though humoral responses naturally decline following two-dose vaccination, we found no evidence of lower antibody concentrations nor faster rates of antibody decline in PLWH compared to controls after accounting for sociodemographic, health and vaccine-related factors. We also found no evidence of poorer viral neutralization in PLWH after two doses, nor evidence that a low nadir CD4+ T-cell count compromised responses. Post-third-dose humoral responses substantially exceeded post-second-dose levels, though anti-Omicron responses were consistently weaker than against wild-type.Nevertheless, post-third-dose responses in PLWH were comparable to or higher than controls. An mRNA-1273 third dose was the strongest consistent correlate of higher post-third-dose responses. Conclusion: PLWH receiving suppressive antiretroviral therapy mount strong antibody responses after two- and three-dose COVID-19 vaccination. Results underscore the immune benefits of third doses in light of Omicron.

16.
NPJ Vaccines ; 7(1): 28, 2022 Feb 28.
Artículo en Inglés | MEDLINE | ID: mdl-35228535

RESUMEN

Humoral responses to COVID-19 vaccines in people living with HIV (PLWH) remain incompletely characterized. We measured circulating antibodies against the SARS-CoV-2 spike protein receptor-binding domain (RBD), ACE2 displacement and viral neutralization activities one month following the first and second COVID-19 vaccine doses, and again 3 months following the second dose, in 100 adult PLWH and 152 controls. All PLWH were receiving suppressive antiretroviral therapy, with median CD4+ T-cell counts of 710 (IQR 525-935) cells/mm3, though nadir CD4+ T-cell counts ranged as low as <10 cells/mm3. After adjustment for sociodemographic, health and vaccine-related variables, HIV infection was associated with lower anti-RBD antibody concentrations and ACE2 displacement activity after one vaccine dose. Following two doses however, HIV was not significantly associated with the magnitude of any humoral response after multivariable adjustment. Rather, older age, a higher burden of chronic health conditions, and dual ChAdOx1 vaccination were associated with lower responses after two vaccine doses. No significant correlation was observed between recent or nadir CD4+ T-cell counts and responses to two vaccine doses in PLWH. These results indicate that PLWH with well-controlled viral loads and CD4+ T-cell counts in a healthy range generally mount strong initial humoral responses to dual COVID-19 vaccination. Factors including age, co-morbidities, vaccine brand, response durability and the rise of new SARS-CoV-2 variants will influence when PLWH will benefit from additional doses. Further studies of PLWH who are not receiving antiretroviral treatment or who have low CD4+ T-cell counts are needed, as are longer-term assessments of response durability.

17.
medRxiv ; 2021 Mar 24.
Artículo en Inglés | MEDLINE | ID: mdl-33791737

RESUMEN

Background: Several Canadian provinces are extending the interval between COVID-19 vaccine doses to increase population vaccine coverage more rapidly. However, immunogenicity of these vaccines after one dose is incompletely characterized, particularly among the elderly, who are at greatest risk of severe COVID-19. Methods: We assessed SARS-CoV-2 humoral responses pre-vaccine and one month following the first dose of BNT162b2 mRNA vaccine, in 12 COVID-19 seronegative residents of long-term care facilities (median age, 82 years), 18 seronegative healthcare workers (HCW; median age, 36 years) and 4 convalescent HCW. Total antibody responses to SARS-CoV-2 nucleocapsid (N) and spike protein receptor binding domain (S/RBD) were assessed using commercial immunoassays. We quantified IgG and IgM responses to S/RBD and determined the ability of antibodies to block S/RBD binding to ACE2 receptor using ELISA. Neutralizing antibody activity was also assessed using pseudovirus and live SARS-CoV-2. Results: After one vaccine dose, binding antibodies against S/RBD were ~4-fold lower in residents compared to HCW (p<0.001). Inhibition of ACE2 binding was 3-fold lower in residents compared to HCW (p=0.01) and pseudovirus neutralizing activity was 2-fold lower (p=0.003). While six (33%) seronegative HCW neutralized live SARS-CoV-2, only one (8%) resident did (p=0.19). In contrast, convalescent HCW displayed 7- to 20-fold higher levels of binding antibodies and substantial ability to neutralize live virus after one dose. Interpretation: Extending the interval between COVID-19 vaccine doses may pose a risk to the elderly due to lower vaccine immunogenicity in this group. We recommend that second doses not be delayed in elderly individuals.

18.
medRxiv ; 2021 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-34671779

RESUMEN

Humoral responses to COVID-19 vaccines in people living with HIV (PLWH) remain incompletely understood. We measured circulating antibodies against the receptor-binding domain (RBD) of the SARS-CoV-2 spike protein, ACE2 displacement and live viral neutralization activities one month following the first and second COVID-19 vaccine doses in 100 adult PLWH and 152 controls. All PLWH were receiving suppressive antiretroviral therapy, with median CD4+ T-cell counts of 710 (IQR 525-935) cells/mm 3 . Nadir CD4+ T-cell counts ranged as low as <10 (median 280; IQR 120-490) cells/mm 3 . After adjustment for sociodemographic, health and vaccine-related variables, HIV infection was significantly associated with 0.2 log 10 lower anti-RBD antibody concentrations (p=0.03) and ∻11% lower ACE2 displacement activity (p=0.02), but not lower viral neutralization (p=0.1) after one vaccine dose. Following two doses however, HIV was no longer significantly associated with the magnitude of any response measured. Rather, older age, a higher burden of chronic health conditions, and having received two ChAdOx1 doses (versus a heterologous or dual mRNA vaccine regimen) were independently associated with lower responses. After two vaccine doses, no significant correlation was observed between the most recent or nadir CD4+ T-cell counts and vaccine responses in PLWH. These results suggest that PLWH with well-controlled viral loads on antiretroviral therapy and CD4+ T-cell counts in a healthy range will generally not require a third COVID-19 vaccine dose as part of their initial immunization series, though other factors such as older age, co-morbidities, vaccine regimen type, and durability of vaccine responses will influence when this group may benefit from additional doses. Further studies of PLWH who are not receiving antiretroviral treatment and/or who have low CD4+ T-cell counts are needed.

19.
Vet Microbiol ; 248: 108821, 2020 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-32891023

RESUMEN

Marek's disease (MD) vaccines are unique in their capability to prevent MD lymphomas as early as a few days after vaccination, despite the fact that they do not eliminate virulent viruses from the host. To help understand the mechanism behind this unique MD vaccine effect, we compared the expression of MDV oncoprotein Meq among CD4+ T cells between vaccinated and unvaccinated birds. Chickens were vaccinated by an MD vaccine, herpesvirus of turkeys, and then challenged by a recombinant virulent MDV that expresses green fluorescent protein simultaneously with Meq. We found significantly fewer Meq-expressing CD4+ T cells appeared in peripheral blood mononuclear cells (PBMC) of the vaccinated birds compared to the unvaccinated birds as early as one week after the virulent virus challenge. In contrast, the quantity of virulent MDV genome remained similar in Meq- PBMC in both vaccinated and unvaccinated birds. Our results suggest that MD vaccination affects the dynamics of Meq-expressing, possibly transformed, cells while impact on the overall infection in the Meq- cells was not significant.


Asunto(s)
Linfocitos T CD4-Positivos/virología , Herpesvirus Gallináceo 2/genética , Vacunas contra la Enfermedad de Marek/inmunología , Enfermedad de Marek/virología , Proteínas Oncogénicas Virales/genética , Animales , Pollos/virología , Genoma Viral , Herpesvirus Gallináceo 2/inmunología , Enfermedad de Marek/inmunología , Vacunas contra la Enfermedad de Marek/administración & dosificación , Proteínas Oncogénicas Virales/inmunología , Enfermedades de las Aves de Corral/inmunología , Enfermedades de las Aves de Corral/virología , Organismos Libres de Patógenos Específicos , Latencia del Virus
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA