Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 49
Filtrar
1.
Opt Express ; 31(17): 27203-27212, 2023 Aug 14.
Artículo en Inglés | MEDLINE | ID: mdl-37710800

RESUMEN

This paper demonstrates whispering gallery mode (WGM) resonance with the help of an encaved optical nano-probe developed inside an optical fiber tip cavity. The nano-probe generates a tightly focused beam with a spot-size of ∼3 µm. A barium titanate microsphere is placed besides the optical axis inside the cavity. The focused beam remains off-axis of the microresonator and excites the WGM. The off-axis excitation shows unique resonating properties depending on the location of the resonator. A resonant peak with quality factor as high as Q ∼7 × 104 is achieved experimentally. Another design with a shorter cavity length for a bigger resonator is also demonstrated by embedding a bigger microsphere on the cleaved fiber tip surface. The optical probe holds great potential for photonic devices and is ideal for studying morphology-based scattering problems.

2.
NMR Biomed ; 33(11): e4397, 2020 11.
Artículo en Inglés | MEDLINE | ID: mdl-32865259

RESUMEN

In this paper we address the possibility to perform imaging of two samples within the same acquisition time using coupled ceramic resonators and one transmit/receive channel. We theoretically and experimentally compare the operation of our ceramic dual-resonator probe with a wire-wound solenoid probe, which is the standard probe used in ultrahigh-field magnetic resonance microscopy. We show that due to the low-loss ceramics used to fabricate the resonators, and a favorable distribution of the electric field within the conducting sample, a dual probe, which contains two samples, achieves an SNR enhancement by a factor close to the square root of 2 compared with a solenoid optimized for one sample.


Asunto(s)
Cerámica/química , Imagen por Resonancia Magnética/instrumentación , Microscopía/instrumentación , Campos Electromagnéticos , Análisis Numérico Asistido por Computador , Hojas de la Planta/anatomía & histología , Relación Señal-Ruido
3.
Opt Express ; 27(23): 33847-33853, 2019 Nov 11.
Artículo en Inglés | MEDLINE | ID: mdl-31878444

RESUMEN

We study, both theoretically and experimentally, tunable metasurfaces supporting sharp Fano-resonances inspired by optical bound states in the continuum. We explore the use of arsenic trisulfide (a photosensitive chalcogenide glass) having optical properties which can be finely tuned by light absorption at the post-fabrication stage. We select the resonant wavelength of the metasurface corresponding to the energy below the arsenic trisulfide bandgap, and experimentally control the resonance spectral position via exposure to the light of energies above the bandgap.

4.
NMR Biomed ; 32(5): e4079, 2019 05.
Artículo en Inglés | MEDLINE | ID: mdl-30773725

RESUMEN

Earlier work on RF metasurfaces for preclinical MRI has targeted applications such as whole-body imaging and dual-frequency coils. In these studies, a nonresonant loop was used to induce currents into a metasurface that was operated as a passive inductively powered resonator. However, as we show in this study, the strategy of using a resonant metasurface reduces the impact of the loop on the global performance of the assembled coil. To mitigate this deficiency, we developed a new approach that relies on the combination of a commercial surface coil and a coupled-wire structure operated away from its resonance. This strategy enables the extension of the sensitive volume of the surface coil while maintaining its local high sensitivity without any hardware modification. A wireless coil based on a two parallel coupled-wire structure was designed and electromagnetic field simulations were carried out with different levels of matching and coupling between both components of the coil. For experimental characterization, a prototype was built and tested at two frequencies, 300 MHz for 1 H and 282.6 MHz for 19 F at 7 T. Phantom and in vivo MRI experiments were conducted in different configurations to study signal and noise figures of the structure. The results showed that the proposed strategy improves the overall sensitive volume while simultaneously maintaining a high signal-to-noise ratio (SNR). Metasurfaces based on coupled wires are therefore shown here as promising and versatile elements in the MRI RF chain, as they allow customized adjustment of the sensitive volume as a function of SNR yield. In addition, they can be easily adapted to different Larmor frequencies without loss of performance.


Asunto(s)
Imagen por Resonancia Magnética , Tecnología Inalámbrica , Animales , Flúor/química , Ratones Endogámicos C57BL , Análisis Numérico Asistido por Computador , Fantasmas de Imagen , Relación Señal-Ruido
5.
Magn Reson Med ; 79(3): 1753-1765, 2018 03.
Artículo en Inglés | MEDLINE | ID: mdl-28580667

RESUMEN

PURPOSE: Perovskites are greatly used nowadays in many technological applications because of their high permittivity, more specifically in the form of aqueous solutions, for MRI dielectric shimming. In this study, full dielectric characterizations of highly concentrated CaTiO3 /BaTiO3 water mixtures were carried out and new permittivity maxima was reached. METHODS: Permittivity measurements were done on aqueous solutions from 0%v/v to dry powder. The permittivity dependence with pressure was investigated. Scanning electron microscopy images were performed on a few representative solutions. BaTiO3 pressed pads of different thicknesses, permittivities, and distances to the head were compared in a 7T MRI scanner. RESULTS: Perovskite aqueous mixtures undergo a pressure-dependent phase transition in terms of permittivity, with increasing water content. A new relative permittivity maximum of 475 was achieved. Microscopic images revealed structural differences between phases. A B1+ improvement in the temporal lobe was obtained with thin, high permittivity BaTiO3 head. CONCLUSIONS: This new preparation method allows improved pad geometry and placement, as a result of the high relative permittivity values achieved. This method has great significance for medical applications of MRI dielectric shimming, being easy to replicate and implement on a large scale. Magn Reson Med 79:1753-1765, 2018. © 2017 The Authors Magnetic Resonance in Medicine published by Wiley Periodicals, Inc. on behalf of International Society for Magnetic Resonance in Medicine. This is an open access article under the terms of the Creative Commons Attribution NonCommercial License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited and is not used for commercial purposes.


Asunto(s)
Compuestos de Bario/química , Compuestos de Calcio/química , Conductividad Eléctrica , Imagen por Resonancia Magnética/instrumentación , Óxidos/química , Titanio/química , Agua/química , Adulto , Diseño de Equipo , Cabeza/diagnóstico por imagen , Humanos , Masculino , Fantasmas de Imagen
6.
Opt Express ; 23(8): 10319-26, 2015 Apr 20.
Artículo en Inglés | MEDLINE | ID: mdl-25969073

RESUMEN

We consider the cloaking properties of electromagnetic wired media deduced from arbitrary coordinate transformations. We propose an interpretation of invisibility via sub-wavelength imaging features. The quality of cloaking is assessed by the level of deformation of the image of a P-shaped source through the stretched wired media: the lesser the image deformation, the more effective the cloaking. We numerically and experimentally demonstrate a tetrahedral wired cloak with longer edge length about 7cm at a frequency of 1GHz (the cloak is thus subwavelength). The wired cloak has two functionalities: it can serve as a high-resolution imaging system over long distances, and it can also perform space transformations such as, but not limited to, cloaking at a single operation frequency.

7.
Appl Opt ; 54(28): 8369-74, 2015 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-26479611

RESUMEN

We report a numerical study on sunscreen design and optimization. Thanks to the combined use of electromagnetic modeling and design of experiments, we are able to screen the most relevant parameters of mineral filters and to optimize sunscreens. Several electromagnetic modeling methods are used depending on the type of particles, density of particles, etc. Both the sun protection factor (SPF) and the UVB/UVA ratio are considered. We show that the design of experiments' model should include interactions between materials and other parameters. We conclude that the material of the particles is a key parameter for the SPF and the UVB/UVA ratio. Among the materials considered, none is optimal for both. The SPF is also highly dependent on the size of the particles.


Asunto(s)
Quemadura Solar/prevención & control , Protectores Solares , Algoritmos , Fenómenos Electromagnéticos , Diseño de Equipo , Compuestos Férricos/química , Humanos , Ensayo de Materiales , Modelos Teóricos , Tamaño de la Partícula , Polimetil Metacrilato/química , Dispersión de Radiación , Piel , Luz Solar , Titanio/química , Rayos Ultravioleta , Óxido de Zinc/química
8.
Appl Opt ; 53(28): 6537-45, 2014 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-25322243

RESUMEN

Sunscreens protect from UV radiation, a carcinogen also responsible for sunburns and age-associated dryness. In order to anticipate the transmission of light through UV protection containing scattering particles, we implement electromagnetic models, using numerical methods for solving Maxwell's equations. After having our models validated, we compare several calculation methods: differential method, scattering by a set of parallel cylinders, or Mie scattering. The field of application and benefits of each method are studied and examples using the appropriate method are described.


Asunto(s)
Algoritmos , Modelos Químicos , Refractometría/métodos , Dispersión de Radiación , Protectores Solares/química , Protectores Solares/efectos de la radiación , Rayos Ultravioleta , Simulación por Computador
9.
Sci Rep ; 14(1): 10485, 2024 May 07.
Artículo en Inglés | MEDLINE | ID: mdl-38714731

RESUMEN

The near-field interaction between quantum emitters, governed by Förster resonance energy transfer (FRET), plays a pivotal role in nanoscale energy transfer mechanisms. However, FRET measurements in the optical regime are challenging as they require nanoscale control of the position and orientation of the emitters. To overcome these challenges, microwave measurements were proposed for enhanced spatial resolution and precise orientation control. However, unlike in optical systems for which the dipole can be taken to be infinitesimal in size, the finite size of microwave antennas can affect energy transfer measurements, especially at short distances. This highlights the necessity to consider the finite antenna length to obtain accurate results. In this study, we advance the understanding of dipole-dipole energy transfer in the microwave regime by developing an analytical model that explicitly considers finite antennas. Unlike previous works, our model calculates the mutual impedance of finite-length thin-wire dipole antennas without assuming a uniform current distribution. We validate our analytical model through experiments investigating energy transfer between antennas placed adjacent to a perfect electric conductor mirror. This allows us to provide clear guidelines for designing microwave experiments, distinguishing conditions where finite-size effects can be neglected and where they must be taken into account. Our study not only contributes to the fundamental physics of energy transfer but also opens avenues for microwave antenna impedance-based measurements to complement optical FRET experiments and quantitatively explore dipole-dipole energy transfer in a wider range of conditions.

10.
Magn Reson Imaging ; 90: 37-43, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-35413425

RESUMEN

PURPOSE: The use of dielectric pads to redistribute the radiofrequency fields is currently a popular solution for 7 T MRI practical applications, especially in brain imaging. In this work, we tackle several downsides of the previous generation of dielectric pads. This new silicon carbide recipe makes them MR invisible and greatly extends the performance lifespan. METHOD: We produce a set of two 10x10x1cm3 dielectric pads based on silicon carbide (SiC) powder dispersed in 4-Fluoro 1, 3-dioxalan-2-one (FEC) and polyethylene Glycol (PEG). The stability of the complex permittivity and the invisibility of the pads are characterized experimentally. Numerical simulations are done to evaluate global and local SAR over the head in presence of the pads. B0, B1+ and standard imaging sequences are performed on healthy volunteers. RESULTS: SiC pads are compared to state-of-the-art perovskite based dielectric pads with similar dielectric properties (barium titanate). Numerical simulations confirm that head and local SAR are similar. MRI measurements confirm that the pads do not induce susceptibility artefacts and improve B1+ amplitude in the temporal lobe regions by 25% on average. CONCLUSION: We demonstrate the long-term performance and invisibility of these new pads in order to increase the contrast in the brain temporal lobes in a commercial 7 T MRI head coil.


Asunto(s)
Artefactos , Imagen por Resonancia Magnética , Encéfalo/diagnóstico por imagen , Compuestos Inorgánicos de Carbono , Humanos , Imagen por Resonancia Magnética/métodos , Fantasmas de Imagen , Ondas de Radio , Compuestos de Silicona
11.
Opt Express ; 19(17): 16154-9, 2011 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-21934978

RESUMEN

We propose a transformational design of an axi-symmetric gradient lens for electromagnetic waves. We show that a metamaterial consisting of toroidal air channels of diameters ranging from 23 nm to 190 nm in a matrix of Polymethylmethacrylate (PMMA) allows for a focussing effect of light over a large bandwidth i.e. [600-1000] nm. We finally propose a simplified design of lens allowing for a two-photon lithography implementation.

12.
Opt Express ; 18(11): 11537-51, 2010 May 24.
Artículo en Inglés | MEDLINE | ID: mdl-20589015

RESUMEN

This paper extends the proposal of Li and Pendry [Phys. Rev. Lett. 101, 203901-4 (2008)] to invisibility carpets for infinite conducting planes and cylinders (or rigid planes and cylinders in the context of acoustic waves propagating in a compressible fluid). Carpets under consideration here do not touch the ground: they levitate in mid-air (or float in mid-water), which leads to approximate cloaking for an object hidden underneath, or touch either sides of a square cylinder on, or over, the ground. The tentlike carpets attached to the sides of a square cylinder illustrate how the notion of a carpet on a wall naturally generalizes to sides of other small compact objects. We then extend the concept of flying carpets to circular cylinders and show that one can hide any type of defects under such circular carpets, and yet they still scatter waves just like a smaller cylinder on its own. Interestingly, all these carpets are described by non-singular parameters. To exemplify this important aspect, we propose a multi-layered carpet consisting of isotropic homogeneous dielectrics rings (or fluids with constant bulk modulus and varying density) which works over a finite range of wavelengths.


Asunto(s)
Modelos Teóricos , Refractometría/métodos , Dispersión de Radiación , Medidas de Seguridad , Simulación por Computador , Luz
13.
Opt Express ; 18(11): 12027-32, 2010 May 24.
Artículo en Inglés | MEDLINE | ID: mdl-20589064

RESUMEN

We adapt tools of transformation optics to surface plasmon polaritons (SPPs) propagating at the interface between two anisotropic media of opposite permittivity sign. We identify the role played by entries of anisotropic heterogeneous tensors of permittivity and permeability--deduced from a coordinate transformation--in the dispersion relation governing propagation of SPPs. We apply this concept to an invisibility cloak, a concentrator and a rotator for SPPs.


Asunto(s)
Lentes , Refractometría/instrumentación , Medidas de Seguridad , Resonancia por Plasmón de Superficie/instrumentación , Diseño Asistido por Computadora , Diseño de Equipo , Análisis de Falla de Equipo , Luz , Dispersión de Radiación
14.
Opt Express ; 18(14): 14496-510, 2010 Jul 05.
Artículo en Inglés | MEDLINE | ID: mdl-20639935

RESUMEN

The ability of gratings made of dielectric ridges placed on top of flat metal layers to open gaps in the dispersion relation of surface plasmon polaritons (SPPs) is studied, both experimentally and theoretically. The gap position can be approximately predicted by the same relation as for standard optical Bragg stacks. The properties of the gap as a function of the grating parameters is numerically analyzed by using the Fourier modal method, and the presence of the gap is experimentally confirmed by leakage radiation microscopy. We also explore the performance of these dielectric gratings as SPP Bragg mirrors. The results show very good reflecting properties of these mirrors for a propagating SPP whose wavelength is inside the gap.

15.
Opt Express ; 18(15): 15757-68, 2010 Jul 19.
Artículo en Inglés | MEDLINE | ID: mdl-20720959

RESUMEN

One of the key challenges in current research into electromagnetic cloaking is to achieve invisibility at optical frequencies and over an extended bandwidth. There has been significant progress towards this using the idea of cloaking by sweeping under the carpet of Li and Pendry. Here, we show that we can harness surface plasmon polaritons at a metal surface structured with a dielectric material to obtain a unique control of their propagation. We exploit this control to demonstrate both theoretically and experimentally cloaking over an unprecedented bandwidth (650-900 nm). Our non-resonant plasmonic metamaterial is designed using transformational optics extended to plasmonics and allows a curved reflector to mimic a flat mirror. Our theoretical predictions are validated by experiments mapping the surface light intensity at a wavelength of 800 nm.

16.
Opt Express ; 17(8): 6770-81, 2009 Apr 13.
Artículo en Inglés | MEDLINE | ID: mdl-19365506

RESUMEN

Extremely shallow lamellar metallic gratings are shown to totally absorb incident light inside a wide angular interval. The full absorption still holds at the homogeneization limit when the period tends toward zero. It is shown that a lamellar grating, illuminated in normal incidence and in transerve magnetic polarization with a period lower than 1/, of the vacuum wavelength behaves like a dielectric one with a high refractive index. The full absorption is then not due to the excitation of surface plasmon but either to Fabry-Perot resonance or Brewster effect, depending on the corrugated layer thickness.


Asunto(s)
Materiales Manufacturados , Metales/química , Modelos Químicos , Refractometría/métodos , Resonancia por Plasmón de Superficie/métodos , Absorción , Simulación por Computador , Luz , Dispersión de Radiación
17.
Opt Express ; 17(26): 23772-84, 2009 Dec 21.
Artículo en Inglés | MEDLINE | ID: mdl-20052088

RESUMEN

We present a detailed experimental and theoretical study of plasmon Talbot effect. A theoretical model based on simple scattering theory is developed to describe the Talbot self-imaging pattern generated by a linear arrangement of cylindrical nanostructures forming a periodic array. We first show the experimental observation of plasmon Talbot carpets created by propagating surface plasmon polaritons (SPP) interacting with cylindrical nanostructures positioned on a thin Au film using leakage radiation microscopy. Such images provide information on the distribution of the plasmon intensity close to the nanostructures. Next, heterodyne interferometer based near-field imaging is carried out to extract information on the plasmonic modes forming the Talbot carpet deployment. We report the experimental observation of Talbot focal spots with dimensions down to lambda/4.


Asunto(s)
Modelos Teóricos , Resonancia por Plasmón de Superficie/métodos , Simulación por Computador , Luz , Dispersión de Radiación
18.
Opt Express ; 17(25): 22603-8, 2009 Dec 07.
Artículo en Inglés | MEDLINE | ID: mdl-20052185

RESUMEN

We extend the design of radially symmetric three-dimensional invisibility cloaks through transformation optics to cloaks with a surface of revolution. We derive the expression of the transformation matrix and show that one of its eigenvalues vanishes on the inner boundary of the cloaks, while the other two remain strictly positive and bounded. The validity of our approach is confirmed by finite edge-elements computations for a non-convex cloak of varying thickness.


Asunto(s)
Luz , Modelos Teóricos , Refractometría/métodos , Dispersión de Radiación , Medidas de Seguridad , Simulación por Computador
19.
Sci Rep ; 9(1): 6022, 2019 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-30988328

RESUMEN

Electromagnetic cloaking, as challenging as it may be to the physicist and the engineer has become a topical subject over the past decade. Thanks to the transformations optics (TO) invisibility devices are in sight even though quite drastic limitations remain yet to be lifted. The extreme material properties which are deduced from TO can be achieved in practice using dispersive metamaterials. However, the bandwidth over which a metamaterial cloak is efficient is drastically limited. We design and simulate a spherical cloak which takes into account the dispersive nature of relative permittivity and permeability tensors realized by plasma-like metamaterials. This spherical cloak works over a broad frequency-band even though these materials are of a highly dispersive nature. We establish two equations of state that link the eigenvalues of the permittivity and permeability tensors in every spherical cloak regardless of the geometrical transformation. Frequency dispersive properties do not disrupt cloaking as long as the equations of states are satisfied in the metamaterial cloak.

20.
J Magn Reson ; 307: 106567, 2019 10.
Artículo en Inglés | MEDLINE | ID: mdl-31476633

RESUMEN

Preclinical MR applications at 17.2 T can require field of views on the order of a few square centimeters. This is a challenging task as the proton Larmor frequency reaches 730 MHz. Most of the protocols at such frequencies are performed with surface transceiver coils for which the sensitive volume and the signal to noise ratio (SNR) is given by their size. Here we propose an approach based on metamaterials in order to enhance the sensitive volume of a commercial surface coil for small animal imaging at 17.2 T. We designed a passive resonator composed of four hybridized electric dipoles placed onto the floor of the MRI bed. Combining numerical and experimental results on a phantom and in vivo, we demonstrate a 20% increase of the sensitive volume in depth and 25% along the rostro-caudal axis while maintaining more than 85% of the local SNR right beneath the surface coil plane. Moreover, our solution gives the ability to double the average SNR in the region between 1.2 and 2 cm away from the loop using a single layer of 1 mm thick metallic wires easy to design and manufacture.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA