Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 106
Filtrar
Más filtros

País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Cell Commun Signal ; 21(1): 32, 2023 02 09.
Artículo en Inglés | MEDLINE | ID: mdl-36759819

RESUMEN

Autophagy is an evolutionarily conserved process that plays a role in regulating homeostasis under physiological conditions. However, dysregulation of autophagy is observed in the development of human diseases, especially cancer. Autophagy has reciprocal functions in cancer and may be responsible for either survival or death. Hepatocellular carcinoma (HCC) is one of the most lethal and common malignancies of the liver, and smoking, infection, and alcohol consumption can lead to its development. Genetic mutations and alterations in molecular processes can exacerbate the progression of HCC. The function of autophagy in HCC is controversial and may be both tumor suppressive and tumor promoting. Activation of autophagy may affect apoptosis in HCC and is a regulator of proliferation and glucose metabolism. Induction of autophagy may promote tumor metastasis via induction of EMT. In addition, autophagy is a regulator of stem cell formation in HCC, and pro-survival autophagy leads to cancer cell resistance to chemotherapy and radiotherapy. Targeting autophagy impairs growth and metastasis in HCC and improves tumor cell response to therapy. Of note, a large number of signaling pathways such as STAT3, Wnt, miRNAs, lncRNAs, and circRNAs regulate autophagy in HCC. Moreover, regulation of autophagy (induction or inhibition) by antitumor agents could be suggested for effective treatment of HCC. In this paper, we comprehensively review the role and mechanisms of autophagy in HCC and discuss the potential benefit of targeting this process in the treatment of the cancer. Video Abstract.


Asunto(s)
Carcinoma Hepatocelular , Neoplasias Hepáticas , Humanos , Carcinoma Hepatocelular/genética , Neoplasias Hepáticas/metabolismo , Línea Celular Tumoral , Autofagia , Proliferación Celular , Regulación Neoplásica de la Expresión Génica
2.
Pharmacol Res ; 190: 106732, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-36931542

RESUMEN

High mobility group A 2 (HMGA2) is a protein that modulates the structure of chromatin in the nucleus. Importantly, aberrant expression of HMGA2 occurs during carcinogenesis, and this protein is an upstream mediator of cancer hallmarks including evasion of apoptosis, proliferation, invasion, metastasis, and therapy resistance. HMGA2 targets critical signaling pathways such as Wnt/ß-catenin and mTOR in cancer cells. Therefore, suppression of HMGA2 function notably decreases cancer progression and improves outcome in patients. As HMGA2 is mainly oncogenic, targeting expression by non-coding RNAs (ncRNAs) is crucial to take into consideration since it affects HMGA2 function. MicroRNAs (miRNAs) belong to ncRNAs and are master regulators of vital cell processes, which affect all aspects of cancer hallmarks. Long ncRNAs (lncRNAs) and circular RNAs (circRNAs), other members of ncRNAs, are upstream mediators of miRNAs. The current review intends to discuss the importance of the miRNA/HMGA2 axis in modulation of various types of cancer, and mentions lncRNAs and circRNAs, which regulate this axis as upstream mediators. Finally, we discuss the effect of miRNAs and HMGA2 interactions on the response of cancer cells to therapy. Regarding the critical role of HMGA2 in regulation of critical signaling pathways in cancer cells, and considering the confirmed interaction between HMGA2 and one of the master regulators of cancer, miRNAs, targeting miRNA/HMGA2 axis in cancer therapy is promising and this could be the subject of future clinical trial experiments.


Asunto(s)
MicroARNs , Neoplasias , ARN Largo no Codificante , Humanos , Línea Celular Tumoral , MicroARNs/genética , MicroARNs/metabolismo , Neoplasias/tratamiento farmacológico , Neoplasias/genética , ARN Circular/genética , ARN Largo no Codificante/metabolismo , ARN no Traducido/genética , Proteína HMGA2/metabolismo
3.
Pharmacol Res ; 187: 106568, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36423787

RESUMEN

The field of non-coding RNA (ncRNA) has made significant progress in understanding the pathogenesis of diseases and has broadened our knowledge towards their targeting, especially in cancer therapy. ncRNAs are a large family of RNAs with microRNAs (miRNAs) being one kind of endogenous RNA which lack encoded proteins. By now, miRNAs have been well-coined in pathogenesis and development of cancer. The current review focuses on the role of miR-21 in cancers and its association with tumor progression. miR-21 has both oncogenic and onco-suppressor functions and most of the experiments are in agreement with the tumor-promoting function of this miRNA. miR-21 primarily decreases PTEN expression to induce PI3K/Akt signaling in cancer progression. Overexpression of miR-21 inhibits apoptosis and is vital for inducing pro-survival autophagy. miR-21 is vital for metabolic reprogramming and can induce glycolysis to enhance tumor progression. miR-21 stimulates EMT mechanisms and increases expression of MMP-2 and MMP-9 thereby elevating tumor metastasis. miR-21 is a target of anti-cancer agents such as curcumin and curcumol and its down-regulation impairs tumor progression. Upregulation of miR-21 results in cancer resistance to chemotherapy and radiotherapy. Increasing evidence has revealed the role of miR-21 as a biomarker as it is present in both the serum and exosomes making them beneficial biomarkers for non-invasive diagnosis of cancer.


Asunto(s)
Carcinogénesis , MicroARNs , Neoplasias , Humanos , Carcinogénesis/genética , Línea Celular Tumoral , Proliferación Celular/genética , Transformación Celular Neoplásica , Relevancia Clínica , Regulación Neoplásica de la Expresión Génica , MicroARNs/genética , MicroARNs/metabolismo , Neoplasias/tratamiento farmacológico , Neoplasias/genética , Fosfatidilinositol 3-Quinasas/metabolismo
4.
Pharmacol Res ; 187: 106553, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36400343

RESUMEN

Cancer progression results from activation of various signaling networks. Among these, PI3K/Akt signaling contributes to proliferation, invasion, and inhibition of apoptosis. Hepatocellular carcinoma (HCC) is a primary liver cancer with high incidence rate, especially in regions with high prevalence of viral hepatitis infection. Autoimmune disorders, diabetes mellitus, obesity, alcohol consumption, and inflammation can also lead to initiation and development of HCC. The treatment of HCC depends on the identification of oncogenic factors that lead tumor cells to develop resistance to therapy. The present review article focuses on the role of PI3K/Akt signaling in HCC progression. Activation of PI3K/Akt signaling promotes glucose uptake, favors glycolysis and increases tumor cell proliferation. It inhibits both apoptosis and autophagy while promoting HCC cell survival. PI3K/Akt stimulates epithelial-to-mesenchymal transition (EMT) and increases matrix-metalloproteinase (MMP) expression during HCC metastasis. In addition to increasing colony formation capacity and facilitating the spread of tumor cells, PI3K/Akt signaling stimulates angiogenesis. Therefore, silencing PI3K/Akt signaling prevents aggressive HCC cell behavior. Activation of PI3K/Akt signaling can confer drug resistance, particularly to sorafenib, and decreases the radio-sensitivity of HCC cells. Anti-cancer agents, like phytochemicals and small molecules can suppress PI3K/Akt signaling by limiting HCC progression. Being upregulated in tumor tissues and clinical samples, PI3K/Akt can also be used as a biomarker to predict patients' response to therapy.


Asunto(s)
Carcinoma Hepatocelular , Neoplasias Hepáticas , Humanos , Carcinoma Hepatocelular/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo , Fosfatidilinositol 3-Quinasas/metabolismo , Neoplasias Hepáticas/metabolismo , Línea Celular Tumoral , Proliferación Celular , Movimiento Celular , Regulación Neoplásica de la Expresión Génica
5.
Mol Cell Probes ; 71: 101930, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-37690573

RESUMEN

BACKGROUND: Breast cancer (BC) has been identified as a significant contributor to the rising number of female cancer deaths. As, it has become clear that breast cancer development depends on the interplay of several biological factors against a single molecule. This research aimed to use proteomics to gain a regulatory and metabolic understanding of BC pathophysiology. METHOD: For the study, a breast cancer proteomics dataset was downloaded from ProteomeXchange and then analyzed by employing MaxQuant and Perseus. Functional enrichment analysis through Metascape and Cytoscape software showed DEPs related biomedical phenomena with potential abruption. The expression of selected lncRNA in terms of the highest connectivity parameters was then quantitatively assessed through RT-PCR in 30 tumor tissues of breast cancer patients, as compared to the adjacent healthy ones. RESULT: The results indicated that among the 3048 identified proteins, 1149 were differentially expressed, which could be mainly enriched in several key terms. Furthermore, the obtained findings revealed that ITGB1-DT was significantly overexpressed in tumor tissues. Moreover, we found five potential compounds that could be attributed to ITGB1-DT targets (ATN-161, Firategrast, SB-683698, dabigatran-etexilate, and tranexamic-acid). CONCLUSION: These analyses proposed that ITGB1-DT could be employed as a differentiated factor to identify breast tumor tissues in healthy samples. Besides this, Firategrast could be introduced as a potential remedial agent for breast cancer patients. Overall, from the analysis of a proteomics dataset, an integrative map was generated, and a novel biomarker that may have been implicated in the early detection of BC was introduced.


Asunto(s)
Neoplasias de la Mama , Humanos , Femenino , Neoplasias de la Mama/genética , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Proteómica , Biomarcadores , Biología Computacional
6.
Mol Cell Probes ; 70: 101916, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37355145

RESUMEN

INTRODUCTION: Oral squamous cell carcinoma (OSCC) is the most common cancers arising from the head and neck region. There is growing evidence that lncRNAs play an important role in OSCC progression. The study aims to investigate correlations between the expression levels of LncRNAs of PARROT, MYCNUT, DANCR, and KTN1-AS1 with clinicopathological characteristics and finding suitable biomarkers for OSCC. MATERIAL AND METHOD: Total lncRNAs related to cancers and HNSC trascriptomics data were downloaded from lncRNADisease v2.0 database and xenabrowser, respectively. Then, ACO was perfomed on shared of LncRNAs between two databases. Finally, some lncRNAs were proposed as potential biomarkers. Thirty biopsies samples from patients with the OSCC and 30 healthy subjects were collected by the surgery. Questionnaires including clinical and demographic data were filled for all cases. Using Real-time PCR, the expression levels of PARROT, MYCNUT, DANCR, and KTN1-AS1 lncRNAs were quantified. RESULT: According to the results,17 novel gene symbol was identified.All the candidate lncRNAs the expression levels of PARROT, MYCNUT, DANCR, and KTN1-AS1 were remarkably upregulated in OSCC tumors in comparison with control group (RQ: 10.00 (P < 0.0001), RQ: 2.920 (P < 0.0001), RQ: 1.623 (P = 0.002), and 4.467 (P < 0.0001), respectively). Also, we found significant associations between tumor lncRNAs expression of PARRPT and DANCER and tumor metastasis (P = 0.009, and P = 0.005, respectively). Additionally, lncRNA KTN1-AS1 expression level was significantly higher in the patients with tumor size more than 3 cm, in comparison with tumor less than 3 cm (P = 0.005). According ROC analysis, all these candidate lncRNAs can be a significant predictor for OSCC (AUC of PARROT lncRNA = 69.72%, AUC of MYCNUT = 98.22%, AUC of DANCR = 74.83%, and AUC of KTN1-AS1 = 99.22%). CONCLUSION: we found that overexpression levels of PARROT, MYCNUT, DANCR, and KTN1-AS1 lncRNAs were correlated with poor clinicopathological characteristics in patients with OSCC. Also, PARROT, MYCNUT, DANCR, and KTN1-AS1 are novel biomarker for the detection of OSCC.


Asunto(s)
Carcinoma de Células Escamosas , Neoplasias de Cabeza y Cuello , Neoplasias de la Boca , ARN Largo no Codificante , Humanos , Carcinoma de Células Escamosas de Cabeza y Cuello/genética , Carcinoma de Células Escamosas/patología , Neoplasias de la Boca/genética , Neoplasias de la Boca/patología , ARN Largo no Codificante/genética , ARN Largo no Codificante/metabolismo , Neoplasias de Cabeza y Cuello/genética , Regulación Neoplásica de la Expresión Génica , Línea Celular Tumoral , Proteínas de la Membrana/genética
7.
Environ Res ; 239(Pt 1): 117117, 2023 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-37805185

RESUMEN

INTRODUCTION: Colorectal cancer (CRC) is one of the most malignant tumors and in which various efforts for screening is inconclusive.The intracrine FGF panel, the non-tyrosine kinase receptors (NTKR) FGFs and affiliated antisenses play a pivotal role in FGF signaling.The expression levels of coding and non-coding intracrine FGFs were assessed in CRC donors.Also, substantial costs and slow pace of drug discovery give high attraction to repurpose of previously discovered drugs to new opportunities. OBJECTIVES: The aim of present study was to evaluate the potential role of the coding and non-coding intracrine FGFs as a new biomarkers for CRC cases and defining drug repurposing to alleviate FGF down regulation. METHODS: RNA-seq data of colon adenocarcinomas (COAD) was downloaded using TCGA biolinks package in R.The DrugBank database (https://go.drugbank.com/) was used to extract interactions between drugs and candidate genes. A total of 200 CRC patients with detailed criteria were enrolled.RNAs were extracted with TRIzol-based protocol and amplified via LightCycler® instrument.FGF11 and FGF13 proteins validation was performed by used of immunohistochemistry technique in tumor and non-tumoral samples.Pearson's correlation analysis and ROC curve plotted by Prism 8.0 software. RESULTS: RNA-seq data from TCGA was analyzed by normalizing with edgeR.Differentially expressed gene (DEG) analysis was generated. WCC algorithm extracted the most significant genes with a total of 47 genes. Expression elevation of iFGF antisenses (12AS,13As,14AS) compared with the normal colon tissue were observed (P = 0.0003,P = 0.042,P = 0.026, respectively). Moreover,a significant decrease in expression of the corresponding sense iFGF genes was detected (P < 0.0001).Plotted receiver operating characteristic (ROC) curves for iFGF components' expression showed an area of over 0.70 (FGF11-13: 0.71% and FGF12-14: 0.78%, P < 0.001) for sense mRNA expression, with the highest sensitivity for FGF12 (92.8%) and lowest for FGF11 (61.41%).The artificial intelligence (AI) revealed the valproic acid as a repurposing drug to relief the down regulation of FGF12 and 13 in CRC patients. CONCLUSION: Intracrine FGFs panel was down regulated versus up regulation of dependent antisenses. Thus, developing novel biomarkers based on iFGF can be considered as a promising strategy for CRC screening.In advanced, valporic acid detected by AI as a repurposing drug which may be applied in clinical trials for CRC treatment.


Asunto(s)
Nanopartículas , Neoplasias , Humanos , Inteligencia Artificial , Reposicionamiento de Medicamentos , Algoritmos , Biomarcadores , Nanopartículas/uso terapéutico , Factores de Crecimiento de Fibroblastos/genética
8.
Environ Res ; 225: 115673, 2023 05 15.
Artículo en Inglés | MEDLINE | ID: mdl-36906270

RESUMEN

The application of nanoarchitectures in cancer therapy seems to be beneficial for the delivery of antitumor drugs. In recent years, attempts have been made to reverse drug resistance, one of the factors threatening the lives of cancer patients worldwide. Gold nanoparticles (GNPs) are metal nanostructures with a variety of advantageous properties, such as tunable size and shape, continuous release of chemicals, and simple surface modification. This review focuses on the application of GNPs for the delivery of chemotherapy agents in cancer therapy. Utilizing GNPs results in targeted delivery and increased intracellular accumulation. Besides, GNPs can provide a platform for the co-delivery of anticancer agents and genetic tools with chemotherapeutic compounds to exert a synergistic impact. Furthermore, GNPs can promote oxidative damage and apoptosis by triggering chemosensitivity. Due to their capacity for providing photothermal therapy, GNPs can enhance the cytotoxicity of chemotherapeutic agents against tumor cells. The pH-, redox-, and light-responsive GNPs are beneficial for drug release at the tumor site. For the selective targeting of cancer cells, surface modification of GNPs with ligands has been performed. In addition to improving cytotoxicity, GNPs can prevent the development of drug resistance in tumor cells by facilitating prolonged release and loading low concentrations of chemotherapeutics while maintaining their high antitumor activity. As described in this study, the clinical use of chemotherapeutic drug-loaded GNPs is contingent on enhancing their biocompatibility.


Asunto(s)
Antineoplásicos , Nanopartículas del Metal , Neoplasias , Humanos , Oro/química , Nanopartículas del Metal/química , Antineoplásicos/farmacología , Antineoplásicos/química , Antineoplásicos/uso terapéutico , Apoptosis , Neoplasias/tratamiento farmacológico , Resistencia a Medicamentos
9.
Environ Res ; 233: 116458, 2023 09 15.
Artículo en Inglés | MEDLINE | ID: mdl-37348629

RESUMEN

Colorectal cancer (CRC) ranks as the third most aggressive tumor globally, and it can be categorized into two forms: colitis-mediated CRC and sporadic CRC. The therapeutic approaches for CRC encompass surgical intervention, chemotherapy, and radiotherapy. However, even with the implementation of these techniques, the 5-year survival rate for metastatic CRC remains at a mere 12-14%. In the realm of CRC treatment, gene therapy has emerged as a novel therapeutic approach. Among the crucial molecular pathways that govern tumorigenesis, STAT3 plays a significant role. This pathway is subject to regulation by cytokines and growth factors. Once translocated into the nucleus, STAT3 influences the expression levels of factors associated with cell proliferation and metastasis. Literature suggests that the upregulation of STAT3 expression is observed as CRC cells progress towards metastatic stages. Consequently, elevated STAT3 levels serve as a significant determinant of poor prognosis and can be utilized as a diagnostic factor for cancer patients. The biological and malignant characteristics of CRC cells contribute to low survival rates in patients, as the upregulation of STAT3 prevents apoptosis and promotes pro-survival autophagy, thereby accelerating tumorigenesis. Furthermore, STAT3 plays a role in facilitating the proliferation of CRC cells through the stimulation of glycolysis and promoting metastasis via the induction of epithelial-mesenchymal transition (EMT). Notably, an intriguing observation is that the upregulation of STAT3 can mediate resistance to 5-fluorouracil, oxaliplatin, and other anti-cancer drugs. Moreover, the radio-sensitivity of CRC diminishes with increased STAT3 expression. Compounds such as curcumin, epigallocatechin gallate, and other anti-tumor agents exhibit the ability to suppress STAT3 and its associated pathways, thereby impeding tumorigenesis in CRC. Furthermore, it is worth noting that nanostructures have demonstrated anti-proliferative and anti-metastatic properties in CRC.


Asunto(s)
Neoplasias Colorrectales , Humanos , Neoplasias Colorrectales/tratamiento farmacológico , Transformación Celular Neoplásica , Apoptosis , Citocinas/metabolismo , Proliferación Celular , Línea Celular Tumoral , Factor de Transcripción STAT3/genética , Factor de Transcripción STAT3/metabolismo
10.
Environ Res ; 228: 115912, 2023 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-37068723

RESUMEN

Nature-derived polymers, or biopolymers, are among the most employed materials for the development of nanocarriers. Chitosan (CS) is derived from the acetylation of chitin, and this biopolymer displays features such as biocompatibility, biodegradability, low toxicity, and ease of modification. CS-based nano-scale delivery systems have been demonstrated to be promising carriers for drug and gene delivery, and they can provide site-specific delivery of cargo. Owing to the high biocompatibility of CS-based nanocarriers, they can be used in the future in clinical trials. On the other hand, diabetes mellitus (DM) is a chronic disease that can develop due to a lack of insulin secretion or insulin sensitivity. Recently, CS-based nanocarriers have been extensively applied for DM therapy. Oral delivery of insulin is the most common use of CS nanoparticles in DM therapy, and they improve the pharmacological bioavailability of insulin. Moreover, CS-based nanostructures with mucoadhesive features can improve oral bioavailability of insulin. CS-based hydrogels have been developed for the sustained release of drugs and the treatment of DM complications such as wound healing. Furthermore, CS-based nanoparticles can mediate delivery of phytochemicals and other therapeutic agents in DM therapy, and they are promising compounds for the treatment of DM complications, including nephropathy, neuropathy, and cardiovascular diseases, among others. The surface modification of nanostructures with CS can improve their properties in terms of drug delivery and release, biocompatibility, and others, causing high attention to these nanocarriers in DM therapy.


Asunto(s)
Quitosano , Diabetes Mellitus , Nanopartículas , Nanoestructuras , Humanos , Quitosano/química , Sistemas de Liberación de Medicamentos , Nanoestructuras/química , Nanopartículas/química , Polímeros/química , Insulina , Diabetes Mellitus/tratamiento farmacológico
11.
Cell Mol Biol Lett ; 28(1): 33, 2023 Apr 21.
Artículo en Inglés | MEDLINE | ID: mdl-37085753

RESUMEN

Hepatocellular carcinoma (HCC) is considered one of the greatest challenges to human life and is the most common form of liver cancer. Treatment of HCC depends on chemotherapy, radiotherapy, surgery, and immunotherapy, all of which have their own drawbacks, and patients may develop resistance to these therapies due to the aggressive behavior of HCC cells. New and effective therapies for HCC can be developed by targeting molecular signaling pathways. The expression of signal transducer and activator of transcription 3 (STAT3) in human cancer cells changes, and during cancer progression, the expression tends to increase. After induction of STAT3 signaling by growth factors and cytokines, STAT3 is phosphorylated and translocated to the nucleus to regulate cancer progression. The concept of the current review revolves around the expression and phosphorylation status of STAT3 in HCC, and studies show that the expression of STAT3 is high during the progression of HCC. This review addresses the function of STAT3 as an oncogenic factor in HCC, as STAT3 is able to prevent apoptosis and thus promote the progression of HCC. Moreover, STAT3 regulates both survival- and death-inducing autophagy in HCC and promotes cancer metastasis by inducing the epithelial-mesenchymal transition (EMT). In addition, upregulation of STAT3 is associated with the occurrence of chemoresistance and radioresistance in HCC. Specifically, non-protein-coding transcripts regulate STAT3 signaling in HCC, and their inhibition by antitumor agents may affect tumor progression. In this review, all these topics are discussed in detail to provide further insight into the role of STAT3 in tumorigenesis, treatment resistance, and pharmacological regulation of HCC.


Asunto(s)
Carcinoma Hepatocelular , Neoplasias Hepáticas , Factor de Transcripción STAT3 , Humanos , Carcinogénesis/genética , Carcinoma Hepatocelular/tratamiento farmacológico , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/metabolismo , Línea Celular Tumoral , Proliferación Celular , Resistencia a Antineoplásicos/genética , Regulación Neoplásica de la Expresión Génica , Neoplasias Hepáticas/tratamiento farmacológico , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/metabolismo , Factor de Transcripción STAT3/metabolismo
12.
Neurochem Res ; 47(7): 1991-2001, 2022 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-35359243

RESUMEN

The field of tissue engineering exploits living cells in a variety of ways to restore, maintain, or enhance tissues and organs. Between stem cells, human induced pluripotent stem cells (hiPSCs), are very important due to their wide abilities. Growth factors can support proliferation, differentiation, and migration of hiPSCs. Platelet-rich plasma (PRP) could be used as the source of growth factors for hiPSCs. In the present study, proliferation and neural differentiation of hiPSCs on surface-modified nanofibrous Poly-L-lactic acid (PLLA) coated with platelet-rich plasma was investigated. The results of in vitro analysis showed that on the surface, which was modified nanofibrous scaffolds coated with platelet-rich plasma, significantly enhanced hiPSCs proliferation and neural differentiation were observed. Whereas the MTT ([3-(4,5-Dimethylthiazol-2-yl)-2,5-Diphenyltetrazolium Bromide]) results showed biocompatibility of surface-modified nanofibrous scaffolds coated with platelet-rich plasma and the usage of these modified nanoscaffolds in neural tissue engineering in vivo is promising for the future.


Asunto(s)
Células Madre Pluripotentes Inducidas , Nanofibras , Plasma Rico en Plaquetas , Diferenciación Celular , Proliferación Celular , Células Cultivadas , Humanos , Ingeniería de Tejidos/métodos , Andamios del Tejido
13.
Pharmacol Res ; 182: 106311, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-35716914

RESUMEN

Epithelial-to-mesenchymal transition (EMT) mechanism is responsible for metastasis of tumor cells and their spread to various organs and tissues of body, providing undesirable prognosis. In addition to migration, EMT increases stemness and mediates therapy resistance. Hence, pathways involved in EMT regulation should be highlighted. STAT3 is an oncogenic pathway that can elevate growth rate and migratory ability of cancer cells and induce drug resistance. The inhibition of STAT3 signaling impairs cancer progression and promotes chemotherapy-mediated cell death. Present review focuses on STAT3 and EMT interaction in modulating cancer migration. First of all, STAT3 is an upstream mediator of EMT and is able to induce EMT-mediated metastasis in brain tumors, thoracic cancers and gastrointestinal cancers. Therefore, STAT3 inhibition significantly suppresses cancer metastasis and improves prognosis of patients. EMT regulators such as ZEB1/2 proteins, TGF-ß, Twist, Snail and Slug are affected by STAT3 signaling to stimulate cancer migration and invasion. Different molecular pathways such as miRNAs, lncRNAs and circRNAs modulate STAT3/EMT axis. Furthermore, we discuss how STAT3 and EMT interaction affects therapy response of cancer cells. Finally, we demonstrate targeting STAT3/EMT axis by anti-tumor agents and clinical application of this axis for improving patient prognosis.


Asunto(s)
MicroARNs , Neoplasias , Línea Celular Tumoral , Movimiento Celular/fisiología , Transición Epitelial-Mesenquimal/fisiología , Regulación Neoplásica de la Expresión Génica , Humanos , MicroARNs/genética , MicroARNs/metabolismo , Metástasis de la Neoplasia , Neoplasias/tratamiento farmacológico , Factor de Transcripción STAT3/metabolismo , Transducción de Señal , Factor de Crecimiento Transformador beta/metabolismo
14.
Pharmacol Res ; 185: 106475, 2022 11.
Artículo en Inglés | MEDLINE | ID: mdl-36202185

RESUMEN

Urological cancers are considered as life-threatening diseases around the world. Bladder cancer is one of the most malignant urological tumors with high mortality and morbidity. Bladder cancer is a heterogenous disease and genetic alterations have shown to be key players in regulating its progression. Although conventional therapies are somewhat beneficial in improving prognosis and survival, bladder cancer patients suffer from recurrence. MicroRNAs (miRNAs) are endogenous short RNA molecules that do not encode proteins and show dysregulated expression in human cancers. miRNAs are regulators of vital biological processes in cells such as proliferation, migration, differentiation and apoptosis. Dysregulation of miRNAs is observed in bladder cancer and they are used as biomarkers for diagnosis and prognosis of patients. LncRNAs and circRNAs are modulators of bladder cancer progression via miRNA expression regulation. Overexpression of onco-suppressor miRNAs impairs bladder cancer progression, while oncogenic miRNAs drive tumor progression. Glycolysis and EMT mechanisms are two important factors for proliferation and migration of bladder cancer that are modulated by miRNAs. Furthermore, miRNAs can affect STAT3 and Wnt/ß-catenin as instances of molecular factors in regulating bladder tumor progression. Bladder tumor response to drug therapy and radiotherapy is regulated by miRNAs. Hence, aim of current review is to provide function of miRNAs in bladder cancer based on their crosstalk with other molecular pathways and interaction with biological processes.


Asunto(s)
Fenómenos Biológicos , MicroARNs , Neoplasias de la Vejiga Urinaria , Humanos , MicroARNs/metabolismo , Neoplasias de la Vejiga Urinaria/diagnóstico , Neoplasias de la Vejiga Urinaria/genética , Neoplasias de la Vejiga Urinaria/terapia , Pronóstico , ARN Circular , Regulación Neoplásica de la Expresión Génica
15.
Pharmacol Res ; 184: 106418, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-36038043

RESUMEN

Initiation and development of cancer depend on multiple factors that mutations in genes and epigenetic level can be considered as important drivers. Epigenetic factors include a large family of members and understanding their function in cancer has been a hot topic. LncRNAs are RNA molecules with no capacity in synthesis of proteins, and they have regulatory functions in cells. LncRNAs are localized in nucleus and cytoplasm, and their abnormal expression is related to development of tumor. This manuscript emphasizes on the role of lncRNA H19 in various cancers and its association with tumor hallmarks. The function of lncRNA H19 in most tumors is oncogenic and therefore, tumor cells increase its expression for promoting their progression. LncRNA H19 contributes to enhancing growth and cell cycle of cancers and by EMT induction, it is able to elevate metastasis rate. Silencing H19 induces apoptotic cell death and disrupts progression of tumors. LncRNA H19 triggers chemo- and radio-resistance in cancer cells. miRNAs are dually upregulated/down-regulated by lncRNA H19 in increasing tumor progression. Anti-cancer agents reduce lncRNA H19 in impairing tumor progression and increasing therapy sensitivity. A number of downstream targets and molecular pathways for lncRNA H19 have been detected in cancers including miRNAs, RUNX1, STAT3, ß-catenin, Akt2 and FOXM1. Clinical studies have revealed potential of lncRNA H19 as biomarker and its association with poor prognosis. LncRNA H19 can be transferred to cancer cells via exosomes in enhancing their progression.


Asunto(s)
MicroARNs , Neoplasias , ARN Largo no Codificante , Línea Celular Tumoral , Proliferación Celular/genética , Subunidad alfa 2 del Factor de Unión al Sitio Principal , Regulación Neoplásica de la Expresión Génica , Humanos , MicroARNs/genética , MicroARNs/metabolismo , Neoplasias/tratamiento farmacológico , Neoplasias/genética , ARN Largo no Codificante/genética , ARN Largo no Codificante/metabolismo , beta Catenina/metabolismo
16.
Pharmacol Res ; 186: 106535, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-36334877

RESUMEN

Epithelial-to-mesenchymal transition (EMT) is a process that involves the transformation of polarized epithelial cells to attain a mesenchymal phenotype that presents an elevated migratory potential, invasiveness, and antiapoptotic properties. Many studies have demonstrated that EMT is a prominent event that is associated with embryogenesis, tumor progression, metastasis, and therapeutic resistance. The EMT process is driven by key transcription factors (such as Snail, Twist, ZEB, and TGF-ß) and several long non-coding RNAs (lncRNAs) in many non-pathological as well as pathological conditions. In the present report, we have comprehensively discussed the oncogenic and tumor suppressor role of lncRNAs and their mechanism of action in the regulation of the EMT process in various cancers such as brain tumors, gastrointestinal tumors, and gynecological and urological tumors. We have also elaborated on the role of lncRNAs in the regulation of EMT-related transcription factors (such as Snail, Twist, ZEB, and TGF-ß) and therapeutic response (chemoresistance and radioresistance). Lastly, we have emphasized the role of exosomal lncRNAs in the regulation of EMT, metastasis, and therapeutic response in the aforementioned cancers. Taken together, this review provides a detailed insight into the understanding of role of lncRNAs/exosomal lncRNAs in EMT, metastasis, and therapeutic response in human cancers.


Asunto(s)
Neoplasias , ARN Largo no Codificante , Humanos , Transición Epitelial-Mesenquimal , ARN Largo no Codificante/genética , Resistencia a Antineoplásicos/genética , Neoplasias/tratamiento farmacológico , Neoplasias/genética , Neoplasias/radioterapia , Factor de Crecimiento Transformador beta/metabolismo , Factores de Transcripción/genética , Carcinogénesis/genética , Regulación Neoplásica de la Expresión Génica
17.
Expert Rev Mol Med ; 23: e13, 2021 09 29.
Artículo en Inglés | MEDLINE | ID: mdl-34583803

RESUMEN

The proliferation, metastasis and therapy response of tumour cells are tightly regulated by interaction among various signalling networks. The microRNAs (miRNAs) can bind to 3'-UTR of mRNA and down-regulate expression of target gene. The miRNAs target various molecular pathways in regulating biological events such as apoptosis, differentiation, angiogenesis and migration. The aberrant expression of miRNAs occurs in cancers and they have both tumour-suppressor and tumour-promoting functions. On the contrary, SOX proteins are capable of binding to DNA and regulating gene expression. SOX2 is a well-known member of SOX family that its overexpression in different cancers to ensure progression and stemness. The present review focuses on modulatory impact of miRNAs on SOX2 in affecting growth, migration and therapy response of cancers. The lncRNAs and circRNAs can function as upstream mediators of miRNA/SOX2 axis in cancers. In addition, NF-κB, TNF-α and SOX17 are among other molecular pathways regulating miRNA/SOX2 axis in cancer. Noteworthy, anti-cancer compounds including bufalin and ovatodiolide are suggested to regulate miRNA/SOX2 axis in cancers. The translation of current findings to clinical course can pave the way to effective treatment of cancer patients and improve their prognosis.


Asunto(s)
MicroARNs , Neoplasias , ARN Largo no Codificante , Regulación Neoplásica de la Expresión Génica , Humanos , MicroARNs/genética , Neoplasias/genética , Neoplasias/terapia , ARN Circular , Factores de Transcripción SOXB1/genética
18.
Neurochem Res ; 46(8): 2154-2166, 2021 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-34031842

RESUMEN

Cholestasis is a bile flow reduction that is induced following Bile Duct Ligation (BDL). Cholestasis impairs memory and induces apoptosis. Apoptosis consists of two pathways: intrinsic and extrinsic. The intrinsic pathway is modulated by BCL-2 (B cell lymphoma-2) family proteins. BCL-2 (a pro-survival BCL-2 protein) has anti-apoptotic effect, while BAD (BCL-2-associated death) and BAX (BCL-2-associated X), the other members of BCL-2 family have pro-apoptotic effect. Furthermore, TFAM (mitochondrial transcriptional factor A) is involved in transcription and maintenance of mitochondrial DNA and PGC-1α (peroxisome proliferator-activated receptor γ coactivator-1α) is a master regulator of mitochondrial biogenesis. On the other hand, NeuroAid is a Traditional Chinese Medicine with neuroprotective and anti-apoptosis effects. In this study, we evaluated the effect of cholestasis on spatial memory and expression of BCL-2, BAD, BAX, TFAM, and PGC-1α in the hippocampus of rats. Additionally, we assessed the effect of NeuroAid on cholestasis-induced cognitive and genetic alterations. Cholestasis was induced by BDL surgery and NeuroAid was injected intraperitoneal at the dose of 0.4 mg/kg. Furthermore, spatial memory was evaluated using Morris Water Maze (MWM) apparatus. The results showed cholestasis impaired spatial memory, increased the expression of BAD and BAX, decreased the expression of TFAM and PGC-1α, and did not alter the expression of BCL-2. Also, NeuroAid decreased the expression of BAD and BAX and increased the expression of TFAM, PGC-1α, and BCL-2. In conclusion, cholestasis impaired spatial memory and increased the expression of pro-apoptotic genes. Also, cholestasis decreased the expression of TFAM and PGC-1α. Interestingly, NeuroAid restored the effects of cholestasis.


Asunto(s)
Colestasis/metabolismo , Medicamentos Herbarios Chinos/uso terapéutico , Expresión Génica/efectos de los fármacos , Trastornos de la Memoria/tratamiento farmacológico , Fármacos Neuroprotectores/uso terapéutico , Memoria Espacial/efectos de los fármacos , Animales , Apoptosis/efectos de los fármacos , Conductos Biliares/cirugía , Colestasis/complicaciones , Hipocampo/efectos de los fármacos , Hipocampo/metabolismo , Ligadura , Masculino , Trastornos de la Memoria/etiología , Prueba del Laberinto Acuático de Morris/efectos de los fármacos , Coactivador 1-alfa del Receptor Activado por Proliferadores de Peroxisomas gamma/genética , Proteínas Proto-Oncogénicas c-bcl-2/genética , Ratas Wistar , Factores de Transcripción/genética , Proteína X Asociada a bcl-2/genética , Proteína Letal Asociada a bcl/genética
19.
Electromagn Biol Med ; 40(3): 375-383, 2021 Jul 03.
Artículo en Inglés | MEDLINE | ID: mdl-33620018

RESUMEN

The effect of an extremely low-frequency magnetic field (ELF-MFs) on the expression levels of NOTCH1 and its regulatory circular RNA (circ-RNA) in gastric cancer has not yet investigated. This study aimed to find the expression changes of NOTCH1 and its regulatory circ-RNA, hsa_circ_0005986, in human gastric adenocarcinoma cell line (AGS) and human normal fibroblast (Hu02) cells fallowing the exposure to discontinuously magnetic flux densities (MFDs) of 0.25, 0.5 ,1 and 2 millitesla (mT) for 18h in comparison to unexposed cells. In addition, the effect of various MFDs on viability of tumor and normal cells was investigated. The cell viability was evaluated by MTT assay. The relative expression of NOTCH1and hsa_circ_0005986 mRNAs was analyzed by quantitative Real-time PCR. The viability of tumor cells was decreased under the exposure of MFs, while the normal cells viability was increased. NOTCH1 was significantly down-regulated in AGS cells and up-regulated in Hu02 cells at all MFDs. The expression changes of NOTCH1 in tumor and  normal cells was depended to the MFD of MFs. According to our results, the tumor and normal cells show different behavior at the molecular level in various MFDs in terms of NOTCH1 and hsa_circ_0005986 expression level. Decrease in tumor cell survival following the exposure to ELF-MFs may be the result of decreased in the expression level of NOTCH1 and its Reg-circ-RNA. These magnetic field-reducing effects on cancer cell survival through the change on the expression of genes involved in the proliferation and progression of cancer can be a new key in cancer treatment.


Asunto(s)
Adenocarcinoma , Neoplasias Gástricas , Adenocarcinoma/genética , Línea Celular Tumoral , Proliferación Celular/genética , Fibroblastos , Regulación Neoplásica de la Expresión Génica , Humanos , Campos Magnéticos , ARN Circular , Receptor Notch1/genética , Neoplasias Gástricas/genética
20.
Cell J ; 26(1): 62-69, 2024 Jan 31.
Artículo en Inglés | MEDLINE | ID: mdl-38351730

RESUMEN

OBJECTIVE: Reduction of cerebral ischemia-reperfusion injury (IRI)/re-oxygenation injury, is defined as the paradoxical exacerbation of the cellular dysfunction and death, following restoration of the blood flow to previously ischemic tissues. The re-establishment of blood flow is essential to salvage the ischemic tissues. As a result, the treatment of IRI with novel therapies, which have fewer side effects, are of great importance. Therefore, this study aimed to investigate the effects of curcumin nanoparticle (CN) pre-treatment on the cerebral I/R rat model. MATERIALS AND METHODS: In this experimental study, CN was administered to rats orally five days before the bilateral common carotid artery occlusion (BCCAO) and continued for three days. The intensity of oxidative stress, the activities of antioxidant enzymes, glutathione (GSH) content, the activity of mitochondrial enzymes, including succinate dehydrogenase (SDH), malate dehydrogenase (MDH) and lactate dehydrogenase (LDH), curcumin bioavailability, pERK/ERK expression ratio and TFEB protein were studied. Data analysis was performed using Graphpad Prism V.8 software, one-way analysis of variance (ANOVA) with the statistical package for the social sciences (SPSS V.26 software). RESULTS: Cerebral IRI-damage significantly increased the oxidative stress (P=0.0008) and decreased the activity of the antioxidant enzymes including catalase (CAT) (P<0.001), super oxide dismutase (SOD) (P<0.001), reduced GSH (P<0.001), mitochondrial enzymes, pERK/ERK expression ratio (P=0.002) and TEFB protein (P=0.005) in rats' brains. In addition, the pre-treatment of the rats with CN resulted in a decrease in the reactive oxygen species (ROS), and an increase in the activities of antioxidants and mitochondrial enzymes. This in turn up-regulated the pERK/ERK expression ratio and TEFB expression. CONCLUSION: CN has neuroprotective effects on the cerebral IRI condition due to its antioxidant properties and is able to overexpress the pERK and TFEB proteins; thus, it can be considered as a suitable treatment option during and after the incidence of stroke.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA