Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Transgenic Res ; 2024 Aug 28.
Artículo en Inglés | MEDLINE | ID: mdl-39196515

RESUMEN

The production of transgenic animals using non-viral methods has raised questions regarding their long-term health and genomic stability. In this study, we evaluated these aspects in transgenic cattle over ten years, using transposon-mediated gene transfer. Our longitudinal analysis included a comprehensive health assessment and whole-genome DNA resequencing. We found no significant alterations in physiological parameters or health complications in transposon-mediated transgenic cattle that exceeded 10 years of age. Genomic analysis revealed that the rates of somatic mutations and copy number variations in transgenic cattle were comparable to those in non-transgenic cattle. Furthermore, structural variants were infrequent, suggesting that transposon-mediated gene insertion did not compromise genomic integrity. These findings highlight the viability of transposon systems for generating transgenic livestock, potentially expanding their applications in agriculture and biotechnology. This study contributes significantly to our understanding of the long-term implications of transgenesis in large animals and supports the safety and stability of this method.

2.
BMC Vet Res ; 18(1): 156, 2022 Apr 27.
Artículo en Inglés | MEDLINE | ID: mdl-35477562

RESUMEN

BACKGROUND: Several DNA transposons including PiggyBac (PB), Sleeping Beauty (SB), and Tol2 have been applied as effective means for of transgenesis in many species. Cattle are not typically experimental animals, and relatively little verification has been presented on this species. Thus, the goal here was to determine the applicability of three transposon systems in somatic and embryo cells in cattle, while also investigating which of the three systems is appropriate for each cell type. Green fluorescent protein (GFP)-expressing transposon systems were used for electroporation and microinjection in the somatic cells and embryo stage, respectively. After transfection, the GFP-positive cells or blastocysts were observed through fluorescence, while the transfection efficiency was calculated by FACS. RESULTS: In bovine somatic cells, the PB (63.97 ± 11.56) showed the highest efficiency of the three systems (SB: 50.74 ± 13.02 and Tol2: 16.55 ± 5.96). Conversely, Tol2 (75.00%) and SB (70.00%) presented a higher tendency in the embryonic cells compared to PB (42.86%). CONCLUSIONS: These results demonstrate that these three transposon systems can be used in bovine somatic cells and embryos as gene engineering experimental methods. Moreover, they demonstrate which type of transposon system to apply depending on the cell type.


Asunto(s)
Elementos Transponibles de ADN , Técnicas de Transferencia de Gen , Animales , Bovinos/genética , Elementos Transponibles de ADN/genética , Técnicas de Transferencia de Gen/veterinaria , Células Germinativas , Transfección/veterinaria
3.
J Anim Sci Biotechnol ; 14(1): 103, 2023 Aug 06.
Artículo en Inglés | MEDLINE | ID: mdl-37543609

RESUMEN

BACKGROUND: Genome editing has been considered as powerful tool in agricultural fields. However, genome editing progress in cattle has not been fast as in other mammal species, for some disadvantages including long gestational periods, single pregnancy, and high raising cost. Furthermore, technically demanding methods such as microinjection and somatic cell nuclear transfer (SCNT) are needed for gene editing in cattle. In this point of view, electroporation in embryos has been risen as an alternative. RESULTS: First, editing efficiency of our electroporation methods were tested for embryos. Presence of mutation on embryo was confirmed by T7E1 assay. With first combination, mutation rates for MSTN and PRNP were 57.6% ± 13.7% and 54.6% ± 13.5%, respectively. In case of MSTN/BLG, mutation rates were 83.9% ± 23.6% for MSTN, 84.5% ± 18.0% for BLG. Afterwards, the double-KO embryos were transferred to surrogates and mutation rate was identified in resultant calves by targeted deep sequencing. Thirteen recipients were transferred for MSTN/PRNP, 4 calves were delivered, and one calf underwent an induction for double KO. Ten surrogates were given double-KO embryos for MSTN/BLG, and four of the six calves that were born had mutations in both genes. CONCLUSIONS: These data demonstrated that production of genome edited cattle via electroporation of RNP could be effectively applied. Finally, MSTN and PRNP from beef cattle and MSTN and BLG from dairy cattle have been born and they will be valuable resources for future precision breeding.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA