Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Pediatr Cardiol ; 42(7): 1554-1566, 2021 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-34046720

RESUMEN

Neonatal mammalian heart has been shown to possess the capacity to regenerate substantially after an injury. This remarkable regenerative capacity is lost in a week. This transition has been marked with cardiomyocyte cell cycle arrest and induction of fibrotic response similar to what occurs after myocardial infarction in adult hearts. Recent studies outlined the function of several cardiogenic factors that play a pivotal role in neonatal cardiac regeneration. However, underlying molecular mechanisms of neonatal cardiac regeneration and other cardiogenic factors remained elusive. Here, we investigated the involvement of novel putative cardiogenic factors in neonatal cardiac regeneration and cardiomyocyte cell cycle withdrawal. We have shown that Cbl, Dnmt3a, and Itch are significantly downregulated during neonatal cardiac regeneration process after cardiac injury in vivo. Intriguingly, several of studied factors are upregulated in non-regenerative period of 7-day-old mice after cardiac injury. Knockdown of Cbl, Dnmt3a and Itch in rat neonatal cardiomyocytes lead to the induction of cardiomyocyte proliferation. Cardiomyocyte proliferation accompanies upregulation of positive regulators of cardiomyocyte division and downregulation of CDKIs. Taken together, our findings suggest that Cbl, Dnmt3a, and Itch may be involved in the regulation of cardiomyocyte cell cycle withdrawal and may represent new targets for the induction of cardiac regeneration.


Asunto(s)
Corazón , Infarto del Miocardio , Animales , Animales Recién Nacidos , Proliferación Celular , Fibrosis , Ratones , Miocitos Cardíacos/patología , Ratas , Regeneración
3.
Eur J Clin Invest ; 45(12): 1252-9, 2015 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-26444145

RESUMEN

BACKGROUND: Coronary microvascular dysfunction (CMD) is an important feature of hypertrophic cardiomyopathy (HCM), which contributes negatively to symptoms and long-term outcome. Previous in vivo imaging studies in HCM suggest that left ventricular outflow tract (LVOT) gradient and genetic status are important contributors to CMD. CMD may be caused by reduced capillary density. Here, we investigated whether a reduction in capillary density is related to genetic status or LVOT gradient severity in an in vitro study of HCM cardiac samples. METHODS: Using immunofluorescence microscopy, we analysed capillaries (Cap) and cardiomyocytes (CM) in myectomy specimens from 18 HCM patients with maximum left ventricular (LV) wall thickness ≥15 mm. All subjects exhibited significant LVOT obstruction, necessitating septal myectomy. In addition, control myocardium from the LV septal wall was collected at autopsy of 6 individuals that suffered a noncardiac death. RESULTS: CM area was higher in patients with HCM compared to controls. Capillary density was significantly lower in patients with HCM compared with controls (1425 ± 262 vs. 2543 ± 509 Cap/mm(2) , P < 0·001), as was the number of Cap per CM corrected for CM area (2·2 ± 0·5 vs. 4·2 ± 0·9 Cap/CM area, P < 0·001). Capillary density did not differ between genotype-negative and genotype-positive HCM patients at similar resting LVOT gradients. A significant correlation was present between resting LVOT gradient and CM area (r = 0·73, P < 0·001), capillary density (r = -0·74, P < 0·001) and the number of Cap per CM corrected for CM area (r = -0·82, P < 0·001). CONCLUSIONS: Our data indicate that LVOT gradient, rather than genetic status, is associated with reduced capillary density in HCM.


Asunto(s)
Capilares/patología , Cardiomiopatía Hipertrófica/patología , Obstrucción del Flujo Ventricular Externo/patología , Adulto , Anciano , Anciano de 80 o más Años , Cardiomiopatía Hipertrófica/genética , Cardiomiopatía Hipertrófica/fisiopatología , Estudios de Casos y Controles , Femenino , Genotipo , Humanos , Masculino , Microscopía Fluorescente , Persona de Mediana Edad , Miocardio/patología , Miocitos Cardíacos/patología , Obstrucción del Flujo Ventricular Externo/genética , Obstrucción del Flujo Ventricular Externo/fisiopatología , Adulto Joven
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA