Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
1.
EMBO J ; 41(17): e108780, 2022 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-35815410

RESUMEN

Schwann cell precursors (SCPs) are nerve-associated progenitors that can generate myelinating and non-myelinating Schwann cells but also are multipotent like the neural crest cells from which they originate. SCPs are omnipresent along outgrowing peripheral nerves throughout the body of vertebrate embryos. By using single-cell transcriptomics to generate a gene expression atlas of the entire neural crest lineage, we show that early SCPs and late migratory crest cells have similar transcriptional profiles characterised by a multipotent "hub" state containing cells biased towards traditional neural crest fates. SCPs keep diverging from the neural crest after being primed towards terminal Schwann cells and other fates, with different subtypes residing in distinct anatomical locations. Functional experiments using CRISPR-Cas9 loss-of-function further show that knockout of the common "hub" gene Sox8 causes defects in neural crest-derived cells along peripheral nerves by facilitating differentiation of SCPs towards sympathoadrenal fates. Finally, specific tumour populations found in melanoma, neurofibroma and neuroblastoma map to different stages of SCP/Schwann cell development. Overall, SCPs resemble migrating neural crest cells that maintain multipotency and become transcriptionally primed towards distinct lineages.


Asunto(s)
Cresta Neural , Células de Schwann , Diferenciación Celular/fisiología , Neurogénesis/fisiología , Nervios Periféricos , Células de Schwann/metabolismo
2.
Semin Cell Dev Biol ; 138: 68-80, 2023 03 30.
Artículo en Inglés | MEDLINE | ID: mdl-35260294

RESUMEN

Since the discovery of this cell population by His in 1850, the neural crest has been under intense study for its important role during vertebrate development. Much has been learned about the function and regulation of neural crest cell differentiation, and as a result, the neural crest has become a key model system for stem cell biology in general. The experiments performed in embryology, genetics, and cell biology in the last 150 years in the neural crest field has given rise to several big questions that have been debated intensely for many years: "How does positional information impact developmental potential? Are neural crest cells individually multipotent or a mixed population of committed progenitors? What are the key factors that regulate the acquisition of stem cell identity, and how does a stem cell decide to differentiate towards one cell fate versus another?" Recently, a marriage between single cell multi-omics, statistical modeling, and developmental biology has shed a substantial amount of light on these questions, and has paved a clear path for future researchers in the field.


Asunto(s)
Cresta Neural , Células Madre , Animales , Diferenciación Celular/genética , Vertebrados
3.
Nat Commun ; 15(1): 7065, 2024 Aug 16.
Artículo en Inglés | MEDLINE | ID: mdl-39152112

RESUMEN

The sympathetic nervous system controls bodily functions including vascular tone, cardiac rhythm, and the "fight-or-flight response". Sympathetic chain ganglia develop in parallel with preganglionic motor nerves extending from the neural tube, raising the question of whether axon targeting contributes to sympathetic chain formation. Using nerve-selective genetic ablations and lineage tracing in mouse, we reveal that motor nerve-associated Schwann cell precursors (SCPs) contribute sympathetic neurons and satellite glia after the initial seeding of sympathetic ganglia by neural crest. Motor nerve ablation causes mispositioning of SCP-derived sympathoblasts as well as sympathetic chain hypoplasia and fragmentation. Sympathetic neurons in motor-ablated embryos project precociously and abnormally towards dorsal root ganglia, eventually resulting in fusion of sympathetic and sensory ganglia. Cell interaction analysis identifies semaphorins as potential motor nerve-derived signaling molecules regulating sympathoblast positioning and outgrowth. Overall, central innervation functions both as infrastructure and regulatory niche to ensure the integrity of peripheral ganglia morphogenesis.


Asunto(s)
Ganglios Simpáticos , Neuronas Motoras , Cresta Neural , Células de Schwann , Sistema Nervioso Simpático , Animales , Sistema Nervioso Simpático/embriología , Ratones , Neuronas Motoras/fisiología , Células de Schwann/metabolismo , Cresta Neural/citología , Cresta Neural/metabolismo , Ganglios Simpáticos/citología , Ganglios Espinales , Semaforinas/metabolismo , Semaforinas/genética , Ratones Transgénicos , Neuroglía/metabolismo , Femenino
4.
Cell Stem Cell ; 30(5): 501-502, 2023 05 04.
Artículo en Inglés | MEDLINE | ID: mdl-37146574

RESUMEN

In this issue, Majd et al.1 derive Schwann cells from human pluripotent stem cells (hPSCs), which can be used to study Schwann cell development and physiology and model diabetic neuropathy. hPSC-derived Schwann cells possess the molecular features of primary Schwann cells and are capable of myelination in vitro and in vivo.


Asunto(s)
Células Madre Pluripotentes , Células de Schwann , Humanos , Diferenciación Celular , Descubrimiento de Drogas
5.
Nat Commun ; 14(1): 5904, 2023 09 22.
Artículo en Inglés | MEDLINE | ID: mdl-37737269

RESUMEN

Glial cells have been proposed as a source of neural progenitors, but the mechanisms underpinning the neurogenic potential of adult glia are not known. Using single cell transcriptomic profiling, we show that enteric glial cells represent a cell state attained by autonomic neural crest cells as they transition along a linear differentiation trajectory that allows them to retain neurogenic potential while acquiring mature glial functions. Key neurogenic loci in early enteric nervous system progenitors remain in open chromatin configuration in mature enteric glia, thus facilitating neuronal differentiation under appropriate conditions. Molecular profiling and gene targeting of enteric glial cells in a cell culture model of enteric neurogenesis and a gut injury model demonstrate that neuronal differentiation of glia is driven by transcriptional programs employed in vivo by early progenitors. Our work provides mechanistic insight into the regulatory landscape underpinning the development of intestinal neural circuits and generates a platform for advancing glial cells as therapeutic agents for the treatment of neural deficits.


Asunto(s)
Neurogénesis , Neuroglía , Adulto , Humanos , Neurogénesis/genética , Diferenciación Celular , Sistema Nervioso Autónomo , Técnicas de Cultivo de Célula
6.
Nat Commun ; 14(1): 3060, 2023 05 27.
Artículo en Inglés | MEDLINE | ID: mdl-37244931

RESUMEN

Formation of oriented myofibrils is a key event in musculoskeletal development. However, the mechanisms that drive myocyte orientation and fusion to control muscle directionality in adults remain enigmatic. Here, we demonstrate that the developing skeleton instructs the directional outgrowth of skeletal muscle and other soft tissues during limb and facial morphogenesis in zebrafish and mouse. Time-lapse live imaging reveals that during early craniofacial development, myoblasts condense into round clusters corresponding to future muscle groups. These clusters undergo oriented stretch and alignment during embryonic growth. Genetic perturbation of cartilage patterning or size disrupts the directionality and number of myofibrils in vivo. Laser ablation of musculoskeletal attachment points reveals tension imposed by cartilage expansion on the forming myofibers. Application of continuous tension using artificial attachment points, or stretchable membrane substrates, is sufficient to drive polarization of myocyte populations in vitro. Overall, this work outlines a biomechanical guidance mechanism that is potentially useful for engineering functional skeletal muscle.


Asunto(s)
Músculo Esquelético , Pez Cebra , Animales , Ratones , Pez Cebra/genética , Músculo Esquelético/fisiología , Miofibrillas/fisiología , Morfogénesis , Mioblastos/fisiología
7.
Nat Genet ; 53(5): 694-706, 2021 05.
Artículo en Inglés | MEDLINE | ID: mdl-33833454

RESUMEN

Characterization of the progression of cellular states during human embryogenesis can provide insights into the origin of pediatric diseases. We examined the transcriptional states of neural crest- and mesoderm-derived lineages differentiating into adrenal glands, kidneys, endothelium and hematopoietic tissue between post-conception weeks 6 and 14 of human development. Our results reveal transitions connecting the intermediate mesoderm and progenitors of organ primordia, the hematopoietic system and endothelial subtypes. Unexpectedly, by using a combination of single-cell transcriptomics and lineage tracing, we found that intra-adrenal sympathoblasts at that stage are directly derived from nerve-associated Schwann cell precursors, similarly to local chromaffin cells, whereas the majority of extra-adrenal sympathoblasts arise from the migratory neural crest. In humans, this process persists during several weeks of development within the large intra-adrenal ganglia-like structures, which may also serve as reservoirs of originating cells in neuroblastoma.


Asunto(s)
Linaje de la Célula , Embrión de Mamíferos/metabolismo , Neuroblastoma/embriología , Neuroblastoma/genética , Análisis de la Célula Individual , Sistema Simpatoadrenal/embriología , Transcriptoma/genética , Animales , Células Cromafines/metabolismo , Células Cromafines/patología , Análisis por Conglomerados , Desarrollo Embrionario , Regulación del Desarrollo de la Expresión Génica , Regulación Neoplásica de la Expresión Génica , Humanos , Lactante , Ratones , Células-Madre Neurales/metabolismo , Neuroblastoma/patología , Células de Schwann/metabolismo , Células de Schwann/patología , Microambiente Tumoral
8.
J Vis Exp ; (151)2019 09 13.
Artículo en Inglés | MEDLINE | ID: mdl-31566611

RESUMEN

Mechanical stimuli are known to modulate biological functions of cells and tissues. Recent studies have suggested that compressive stress alters growth plate cartilage architecture and results in growth modulation of long bones of children. To determine the role of compressive stress in bone growth, we created a microfluidic device actuated by pneumatic pressure, to dynamically (or statically) compress growth plate chondrocytes embedded in alginate hydrogel cylinders. In this article, we describe detailed methods for fabricating and characterizing this device. The advantages of our protocol are: 1) Five different magnitudes of compressive stress can be generated on five technical replicates in a single platform, 2) It is easy to visualize cell morphology via a conventional light microscope, 3) Cells can be rapidly isolated from the device after compression to facilitate downstream assays, and 4) The platform can be applied to study mechanobiology of any cell type that can grow in hydrogels.


Asunto(s)
Condrocitos/citología , Dispositivos Laboratorio en un Chip , Microfluídica , Estrés Mecánico , Alginatos , Animales , Desarrollo Óseo , Cartílago , Técnicas de Cultivo de Célula , Fuerza Compresiva , Diseño de Equipo , Placa de Crecimiento , Humanos , Hidrogeles/metabolismo , Presión
9.
Lab Chip ; 18(14): 2077-2086, 2018 07 10.
Artículo en Inglés | MEDLINE | ID: mdl-29897088

RESUMEN

Hyaline cartilage is a specialized type of connective tissue that lines many moveable joints (articular cartilage) and contributes to bone growth (growth plate cartilage). Hyaline cartilage is composed of a single cell type, the chondrocyte, which produces a unique hydrated matrix to resist compressive stress. Although compressive stress has profound effects on transcriptional networks and matrix biosynthesis in chondrocytes, mechanistic relationships between strain, signal transduction, cell metabolism, and matrix production remain superficial. Here, we describe development and validation of a polydimethylsiloxane (PDMS)-based pneumatic microfluidic cell compression device which generates multiple compression conditions in a single platform. The device contained an array of PDMS balloons of different sizes which were actuated by pressurized air, and the balloons compressed chondrocytes cells in alginate hydrogel constructs. Our characterization and testing of the device showed that the developed platform could compress chondrocytes with various magnitudes simultaneously with negligible effect on cell viability. Also, the device is compatible with live cell imaging to probe early effects of compressive stress, and it can be rapidly dismantled to facilitate molecular studies of compressive stress on transcriptional networks. Therefore, the proposed device will enhance the productivity of chondrocyte mechanobiology studies, and it can be applied to study mechanobiology of other cell types.


Asunto(s)
Condrocitos/citología , Dispositivos Laboratorio en un Chip , Fenómenos Mecánicos , Fenómenos Biomecánicos , Supervivencia Celular , Factores de Tiempo
10.
Tissue Eng Part A ; 24(1-2): 94-105, 2018 01.
Artículo en Inglés | MEDLINE | ID: mdl-28525313

RESUMEN

Defining the final size and geometry of engineered tissues through precise control of the scalar and vector components of tissue growth is a necessary benchmark for regenerative medicine, but it has proved to be a significant challenge for tissue engineers. The growth plate cartilage that promotes elongation of the long bones is a good model system for studying morphogenetic mechanisms because cartilage is composed of a single cell type, the chondrocyte; chondrocytes are readily maintained in culture; and growth trajectory is predominately in a single vector. In this cartilage, growth is generated via a differentiation program that is spatially and temporally regulated by an interconnected network composed of long- and short-range signaling mechanisms that together result in the formation of functionally distinct cellular zones. To facilitate investigation of the mechanisms underlying anisotropic growth, we developed an in vitro model of the growth plate cartilage by using neonatal mouse growth plate chondrocytes encapsulated in alginate hydrogel beads. In bead cultures, encapsulated chondrocytes showed high viability, cartilage matrix deposition, low levels of chondrocyte hypertrophy, and a progressive increase in cell proliferation over 7 days in culture. Exogenous factors were used to test functionality of the parathyroid-related protein-Indian hedgehog (PTHrP-IHH) signaling interaction, which is a crucial feedback loop for regulation of growth. Consistent with in vivo observations, exogenous PTHrP stimulated cell proliferation and inhibited hypertrophy, whereas IHH signaling stimulated chondrocyte hypertrophy. Importantly, the treatment of alginate bead cultures with IHH or thyroxine resulted in formation of a discrete domain of hypertrophic cells that mimics tissue architecture of native growth plate cartilage. Together, these studies are the first demonstration of a tunable in vitro system to model the signaling network interactions that are required to induce zonal architecture in growth plate chondrocytes, which could also potentially be used to grow cartilage cultures of specific geometries to meet personalized patient needs.


Asunto(s)
Alginatos/química , Cartílago/citología , Placa de Crecimiento/citología , Andamios del Tejido/química , Animales , Diferenciación Celular , Células Cultivadas , Citometría de Flujo , Ácido Glucurónico/química , Ácidos Hexurónicos/química , Ratones , Transducción de Señal
11.
Elife ; 62017 04 17.
Artículo en Inglés | MEDLINE | ID: mdl-28414273

RESUMEN

Cartilaginous structures are at the core of embryo growth and shaping before the bone forms. Here we report a novel principle of vertebrate cartilage growth that is based on introducing transversally-oriented clones into pre-existing cartilage. This mechanism of growth uncouples the lateral expansion of curved cartilaginous sheets from the control of cartilage thickness, a process which might be the evolutionary mechanism underlying adaptations of facial shape. In rod-shaped cartilage structures (Meckel, ribs and skeletal elements in developing limbs), the transverse integration of clonal columns determines the well-defined diameter and resulting rod-like morphology. We were able to alter cartilage shape by experimentally manipulating clonal geometries. Using in silico modeling, we discovered that anisotropic proliferation might explain cartilage bending and groove formation at the macro-scale.


Asunto(s)
Cartílago/embriología , Vertebrados/embriología , Animales , Simulación por Computador , Ratones , Modelos Biológicos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA