Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
1.
Nat Immunol ; 9(9): 1037-46, 2008 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-18641654

RESUMEN

Tumor necrosis factor receptor 1 (TNFR1) and Toll-like receptors (TLRs) regulate immune and inflammatory responses. Here we show that the TNFR1-associated death domain protein (TRADD) is critical in TNFR1, TLR3 and TLR4 signaling. TRADD deficiency abrogated TNF-induced apoptosis, prevented recruitment of the ubiquitin ligase TRAF2 and ubiquitination of the adaptor RIP1 in the TNFR1 signaling complex, and considerably inhibited but did not completely abolish activation of the transcription factor NF-kappaB and mitogen-activated protein kinases 'downstream' of TNFR1. TRIF-dependent cytokine production induced by the synthetic double-stranded RNA poly(I:C) and lipopolysaccharide was lower in TRADD-deficient mice than in wild-type mice. Moreover, TRADD deficiency inhibited poly(I:C)-mediated RIP1 ubiquitination and activation of NF-kappaB and mitogen-activated protein kinase signaling in fibroblasts but not in bone marrow macrophages. Thus, TRADD is an essential component of TNFR1 signaling and has a critical but apparently cell type-specific function in TRIF-dependent TLR responses.


Asunto(s)
Transducción de Señal , Proteína de Dominio de Muerte Asociada a Receptor de TNF/deficiencia , Factor 1 Asociado a Receptor de TNF/metabolismo , Péptidos y Proteínas Asociados a Receptores de Factores de Necrosis Tumoral/fisiología , Animales , Ratones , Proteínas Quinasas Activadas por Mitógenos/metabolismo , FN-kappa B/metabolismo , Transducción de Señal/efectos de los fármacos , Proteína de Dominio de Muerte Asociada a Receptor de TNF/metabolismo , Péptidos y Proteínas Asociados a Receptores de Factores de Necrosis Tumoral/genética , Ubiquitina/metabolismo
2.
Immunity ; 35(4): 572-82, 2011 Oct 28.
Artículo en Inglés | MEDLINE | ID: mdl-22000287

RESUMEN

Epidermal keratinocytes provide an essential structural and immunological barrier forming the first line of defense against potentially pathogenic microorganisms. Mechanisms regulating barrier integrity and innate immune responses in the epidermis are important for the maintenance of skin immune homeostasis and the pathogenesis of inflammatory skin diseases. Here, we show that epidermal keratinocyte-restricted deficiency of the adaptor protein FADD (FADD(E-KO)) induced severe inflammatory skin lesions in mice. The development of skin inflammation in FADD(E-KO) mice was triggered by RIP kinase 3 (RIP3)-mediated programmed necrosis (termed necroptosis) of FADD-deficient keratinocytes, which was partly dependent on the deubiquitinating enzyme CYLD and tumor necrosis factor (TNF)-TNF receptor 1 signaling. Collectively, our findings provide an in vivo experimental paradigm that regulation of necroptosis in keratinocytes is important for the maintenance of immune homeostasis and the prevention of chronic inflammation in the skin.


Asunto(s)
Apoptosis , Dermatitis/inmunología , Dermatitis/patología , Epidermis/inmunología , Proteína de Dominio de Muerte Asociada a Fas/inmunología , Queratinocitos/inmunología , Animales , Células Cultivadas , Dermatitis/metabolismo , Proteína de Dominio de Muerte Asociada a Fas/deficiencia , Homeostasis , Ratones , Ratones Noqueados , Factor 88 de Diferenciación Mieloide/metabolismo , Necrosis , Transducción de Señal
3.
Nature ; 501(7467): 416-20, 2013 Sep 19.
Artículo en Inglés | MEDLINE | ID: mdl-23975097

RESUMEN

DNA damage responses have been well characterized with regard to their cell-autonomous checkpoint functions leading to cell cycle arrest, senescence and apoptosis. In contrast, systemic responses to tissue-specific genome instability remain poorly understood. In adult Caenorhabditis elegans worms germ cells undergo mitotic and meiotic cell divisions, whereas somatic tissues are entirely post-mitotic. Consequently, DNA damage checkpoints function specifically in the germ line, whereas somatic tissues in adult C. elegans are highly radio-resistant. Some DNA repair systems such as global-genome nucleotide excision repair (GG-NER) remove lesions specifically in germ cells. Here we investigated how genome instability in germ cells affects somatic tissues in C. elegans. We show that exogenous and endogenous DNA damage in germ cells evokes elevated resistance to heat and oxidative stress. The somatic stress resistance is mediated by the ERK MAP kinase MPK-1 in germ cells that triggers the induction of putative secreted peptides associated with innate immunity. The innate immune response leads to activation of the ubiquitin-proteasome system (UPS) in somatic tissues, which confers enhanced proteostasis and systemic stress resistance. We propose that elevated systemic stress resistance promotes endurance of somatic tissues to allow delay of progeny production when germ cells are genomically compromised.


Asunto(s)
Adaptación Fisiológica/fisiología , Caenorhabditis elegans/fisiología , Daño del ADN , Células Germinativas/inmunología , Células Germinativas/metabolismo , Inmunidad Innata , Estrés Fisiológico/inmunología , Animales , Caenorhabditis elegans/citología , Caenorhabditis elegans/genética , Caenorhabditis elegans/inmunología , Proteínas de Caenorhabditis elegans/metabolismo , Daño del ADN/genética , Activación Enzimática , Inestabilidad Genómica/genética , Células Germinativas/enzimología , Calor , Inmunidad Innata/genética , Sistema de Señalización de MAP Quinasas , Proteína Quinasa 1 Activada por Mitógenos/metabolismo , Estrés Oxidativo , Complejo de la Endopetidasa Proteasomal/metabolismo , Proteolisis , Ubiquitina/metabolismo
4.
Semin Immunol ; 26(4): 303-9, 2014 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-24856329

RESUMEN

The nematode worm Caenorhabditis elegans comprises an ancestral immune system. C. elegans recognizes and responds to viral, bacterial, and fungal infections. Components of the RNA interference machinery respond to viral infection, while highly conserved MAPK signaling pathways activate the innate immune response to bacterial infection. C. elegans has been particularly important for exploring the role of innate immunity in organismal stress resistance and the regulation of longevity. Also functions of neuronal sensing of infectious bacteria have recently been uncovered. Studies on nematode immunity can be instructive in exploring innate immune signaling in the absence of specialized immune cells and adaptive immunity.


Asunto(s)
Caenorhabditis elegans/inmunología , Inmunidad Innata , Modelos Animales , Animales , Caenorhabditis elegans/citología , Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/inmunología , Proteínas de Caenorhabditis elegans/metabolismo , Humanos , Regeneración
5.
Trends Genet ; 30(3): 95-102, 2014 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-24439457

RESUMEN

DNA damage checkpoints are important tumor-suppressor mechanisms that halt cell cycle progression to allow time for DNA repair, or induce senescence and apoptosis to remove damaged cells permanently. Non-cell-autonomous DNA damage responses activate the innate immune system in multiple metazoan species. These responses not only enable clearance of damaged cells and contribute to tissue remodeling and regeneration but can also result in chronic inflammation and tissue damage. Germline DNA damage-induced systemic stress resistance (GDISR) is mediated by an ancestral innate immune response and results in organismal adjustments to the presence of damaged cells. We discuss GDISR as an organismal DNA damage checkpoint mechanism through which elevated somatic endurance can extend reproductive lifespan when germ cells require extended time for restoring genome stability.


Asunto(s)
Adaptación Fisiológica/genética , Daño del ADN , Inestabilidad Genómica/genética , Animales , Humanos , Inflamación/genética , Inflamación/patología , Neoplasias/genética , Neoplasias/patología , Regeneración/genética
6.
Immunity ; 28(5): 651-61, 2008 May.
Artículo en Inglés | MEDLINE | ID: mdl-18439848

RESUMEN

Upon detection of viral RNA, the helicases RIG-I and/or MDA5 trigger, via their adaptor Cardif (also known as IPS-1, MAVS, or VISA), the activation of the transcription factors NF-kappaB and IRF3, which collaborate to induce an antiviral type I interferon (IFN) response. FADD and RIP1, known as mediators of death-receptor signaling, are implicated in this antiviral pathway; however, the link between death-receptor and antiviral signaling is not known. Here we showed that TRADD, a crucial adaptor of tumor necrosis factor receptor (TNFRI), was important in RIG-like helicase (RLH)-mediated signal transduction. TRADD is recruited to Cardif and orchestrated complex formation with the E3 ubiquitin ligase TRAF3 and TANK and with FADD and RIP1, leading to the activation of IRF3 and NF-kappaB. Loss of TRADD prevented Cardif-dependent activation of IFN-beta, reduced the production of IFN-beta in response to RNA viruses, and enhanced vesicular stomatitis virus replication. Thus, TRADD is not only an essential component of proinflammatory TNFRI signaling, but is also required for RLH-Cardif-dependent antiviral immune responses.


Asunto(s)
ADN Helicasas/metabolismo , Factor 3 Regulador del Interferón/metabolismo , Infecciones por Rhabdoviridae/inmunología , Proteína de Dominio de Muerte Asociada a Receptor de TNF/metabolismo , Vesiculovirus/inmunología , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Animales , Proteína de Dominio de Muerte Asociada a Fas/metabolismo , Proteínas Activadoras de GTPasa/metabolismo , Humanos , Factor 3 Regulador del Interferón/inmunología , Interferón Tipo I/inmunología , Interferón Tipo I/metabolismo , Proteínas de la Membrana/metabolismo , Ratones , Ratones Noqueados , Ratones Mutantes , FN-kappa B/metabolismo , Proteínas del Tejido Nervioso/metabolismo , Receptores de Superficie Celular , Infecciones por Rhabdoviridae/virología , Transducción de Señal , Factor 3 Asociado a Receptor de TNF/inmunología , Factor 3 Asociado a Receptor de TNF/metabolismo , Ubiquitina-Proteína Ligasas/metabolismo , Vesiculovirus/fisiología
7.
Front Oncol ; 11: 687371, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34408980

RESUMEN

Hepatocellular carcinoma (HCC) remains a devastating malignancy worldwide due to lack of effective therapy. The immune-rich contexture of HCC tumor microenvironment (TME) makes this tumor an appealing target for immune-based therapies; however, the immunosuppressive TME is still a major challenge for more efficient immunotherapy in HCC. Using bioinformatics analysis based on the TCGA database, here we found that MAPK10 is frequently down-regulated in HCC tumors and significantly correlates with poor survival of HCC patients. HCC patients with low MAPK10 expression have lower expression scores of tumor infiltration lymphocytes (TILs) and stromal cells in the TME and increased scores of tumor cells than those with high MAPK10 expression. Further transcriptomic analyses revealed that the immune activity in the TME of HCC was markedly reduced in the low-MAPK10 group of HCC patients compared to the high-MAPK10 group. Additionally, we identified 495 differentially expressed immune-associated genes (DIGs), with 482 genes down-regulated and 13 genes up-regulated in parallel with the decrease of MAPK10 expression. GO enrichment and KEGG pathway analyses indicated that the biological functions of these DIGs included cell chemotaxis, leukocyte migration and positive regulation of the response to cytokine-cytokine receptor interaction, T cell receptor activation and MAPK signaling pathway. Protein-protein interaction (PPI) analyses of the 495 DIGs revealed five potential downstream hub genes of MAPK10, including SYK, CBL, VAV1, LCK, and CD3G. Several hub genes such as SYK, LCK, and VAV1 could respond to the immunological costimulatory signaling mediated by the transmembrane protein ICAM1, which was identified as a down-regulated DIG associated with low-MAPK10 expression. Moreover, ectopic overexpression or knock-down of MAPK10 could up-regulate or down-regulate ICAM1 expression via phosphorylation of c-jun at Ser63 in HCC cell lines, respectively. Collectively, our results demonstrated that MAPK10 down-regulation likely contributes to the immunosuppressive TME of HCC, and this gene might serve as a potential immunotherapeutic target and a prognostic factor for HCC patients.

8.
Genomics Proteomics Bioinformatics ; 18(4): 430-442, 2020 08.
Artículo en Inglés | MEDLINE | ID: mdl-33309863

RESUMEN

Aging is a complex process that can be characterized by functional and cognitive decline in an individual. Aging can be assessed based on the functional capacity of vital organs and their intricate interactions with one another. Thus, the nature of aging can be described by focusing on a specific organ and an individual itself. However, to fully understand the complexity of aging, one must investigate not only a single tissue or biological process but also its complex interplay and interdependencies with other biological processes. Here, using RNA-seq, we monitored changes in the transcriptome during aging in four tissues (including brain, blood, skin and liver) in mice at 9 months, 15 months, and 24 months, with a final evaluation at the very old age of 30 months. We identified several genes and processes that were differentially regulated during aging in both tissue-dependent and tissue-independent manners. Most importantly, we found that the electron transport chain (ETC) of mitochondria was similarly affected at the transcriptome level in the four tissues during the aging process. We also identified the liver as the tissue showing the largest variety of differentially expressed genes (DEGs) over time. Lcn2 (Lipocalin-2) was found to be similarly regulated among all tissues, and its effect on longevity and survival was validated using its orthologue in Caenorhabditis elegans. Our study demonstrated that the molecular processes of aging are relatively subtle in their progress, and the aging process of every tissue depends on the tissue's specialized function and environment. Hence, individual gene or process alone cannot be described as the key of aging in the whole organism.


Asunto(s)
Envejecimiento , Longevidad , Envejecimiento/genética , Animales , Caenorhabditis elegans/genética , Longevidad/genética , Ratones , Mitocondrias/genética , Transcriptoma
9.
Nat Metab ; 2(11): 1316-1331, 2020 11.
Artículo en Inglés | MEDLINE | ID: mdl-33139960

RESUMEN

Current clinical trials are testing the life-extending benefits of the diabetes drug metformin in healthy individuals without diabetes. However, the metabolic response of a non-diabetic cohort to metformin treatment has not been studied. Here, we show in C. elegans and human primary cells that metformin shortens lifespan when provided in late life, contrary to its positive effects in young organisms. We find that metformin exacerbates ageing-associated mitochondrial dysfunction, causing respiratory failure. Age-related failure to induce glycolysis and activate the dietary-restriction-like mobilization of lipid reserves in response to metformin result in lethal ATP exhaustion in metformin-treated aged worms and late-passage human cells, which can be rescued by ectopic stabilization of cellular ATP content. Metformin toxicity is alleviated in worms harbouring disruptions in insulin-receptor signalling, which show enhanced resilience to mitochondrial distortions at old age. Together, our data show that metformin induces deleterious changes of conserved metabolic pathways in late life, which could bring into question its benefits for older individuals without diabetes.


Asunto(s)
Envejecimiento , Caenorhabditis elegans , Hipoglucemiantes/toxicidad , Metabolismo/efectos de los fármacos , Metformina/toxicidad , Adenosina Trifosfato/metabolismo , Animales , Restricción Calórica , Glucólisis , Humanos , Esperanza de Vida , Metabolismo de los Lípidos , Microbiota , Enfermedades Mitocondriales/metabolismo , Cultivo Primario de Células , Receptor de Insulina/metabolismo , Transducción de Señal
10.
Mech Ageing Dev ; 165(Pt A): 47-53, 2017 07.
Artículo en Inglés | MEDLINE | ID: mdl-27317629

RESUMEN

The impact of DNA damage-induced immune responses on aging and disease development is a topic of growing scientific interest and debate. While abundant data links persistent genotoxic stress and associated inflammatory activity to organ decline and cancer development, evidence of pro-homeostatic nature of immune responses triggered by transient DNA damage gradually accumulates. Current review focuses on comparing systemic outcomes of transient genotoxicity with effects of persistent DNA damage from the angle of associated immune activity. We discuss genotoxic stress as a potential damage associated molecular pattern (DAMP) which alerts the organism of the upcoming systemic dysfunction and pre-conditions the body for damage tolerance and repair.


Asunto(s)
Daño del ADN/inmunología , Reparación del ADN/inmunología , Neoplasias/inmunología , Animales , Humanos , Inflamación/genética , Inflamación/inmunología , Inflamación/patología , Neoplasias/genética , Neoplasias/patología
11.
Nat Commun ; 7: 12508, 2016 08 26.
Artículo en Inglés | MEDLINE | ID: mdl-27561390

RESUMEN

The tumour suppressor CYLD is a deubiquitinase previously shown to inhibit NF-κB, MAP kinase and Wnt signalling. However, the tumour suppressing mechanisms of CYLD remain poorly understood. Here we show that loss of CYLD catalytic activity causes impaired DNA damage-induced p53 stabilization and activation in epithelial cells and sensitizes mice to chemical carcinogen-induced intestinal and skin tumorigenesis. Mechanistically, CYLD interacts with and deubiquitinates p53 facilitating its stabilization in response to genotoxic stress. Ubiquitin chain-restriction analysis provides evidence that CYLD removes K48 ubiquitin chains from p53 indirectly by cleaving K63 linkages, suggesting that p53 is decorated with complex K48/K63 chains. Moreover, CYLD deficiency also diminishes CEP-1/p53-dependent DNA damage-induced germ cell apoptosis in the nematode Caenorhabditis elegans. Collectively, our results identify CYLD as a deubiquitinase facilitating DNA damage-induced p53 activation and suggest that regulation of p53 responses to genotoxic stress contributes to the tumour suppressor function of CYLD.


Asunto(s)
Carcinogénesis/genética , Cisteína Endopeptidasas/metabolismo , Reparación del ADN/genética , Proteína p53 Supresora de Tumor/genética , Animales , Apoptosis/genética , Azoximetano/toxicidad , Caenorhabditis elegans/fisiología , Proteínas de Caenorhabditis elegans/metabolismo , Cisteína Endopeptidasas/genética , Daño del ADN/fisiología , Enzima Desubiquitinante CYLD , Femenino , Predisposición Genética a la Enfermedad , Neoplasias Intestinales/inducido químicamente , Neoplasias Intestinales/genética , Neoplasias Intestinales/patología , Lisina/metabolismo , Masculino , Ratones , Ratones Transgénicos , Transducción de Señal/fisiología , Neoplasias Cutáneas/inducido químicamente , Neoplasias Cutáneas/genética , Neoplasias Cutáneas/patología , Proteína p53 Supresora de Tumor/metabolismo , Ubiquitinación/genética
12.
Ageing Res Rev ; 23(Pt A): 3-11, 2015 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-25560147

RESUMEN

The maintenance of the genome is of pivotal importance for the functional integrity of cells and tissues. The gradual accumulation of DNA damage is thought to contribute to the functional decline of tissues and organs with ageing. Defects in multiple genome maintenance systems cause human disorders characterized by cancer susceptibility, developmental failure, and premature ageing. The complex pathological consequences of genome instability are insufficiently explained by cell-autonomous DNA damage responses (DDR) alone. Quality control pathways play an important role in DNA repair and cellular DDR pathways. Recent years have revealed non-cell autonomous effects of DNA damage that impact the physiological adaptations during ageing. We will discuss the role of quality assurance pathways in cell-autonomous and systemic responses to genome instability.


Asunto(s)
Envejecimiento/genética , Envejecimiento/fisiología , Daño del ADN/genética , Daño del ADN/fisiología , Animales , Núcleo Celular/genética , Núcleo Celular/metabolismo , Genoma Humano/genética , Genoma Humano/fisiología , Inestabilidad Genómica , Humanos , Biosíntesis de Proteínas/genética , Biosíntesis de Proteínas/fisiología , Control de Calidad
13.
Nat Commun ; 5: 4585, 2014 Aug 19.
Artículo en Inglés | MEDLINE | ID: mdl-25134987

RESUMEN

CYLD is a tumour suppressor gene mutated in familial cylindromatosis, a genetic disorder leading to the development of skin appendage tumours. It encodes a deubiquitinating enzyme that removes Lys63- or linear-linked ubiquitin chains. CYLD was shown to regulate cell proliferation, cell survival and inflammatory responses, through various signalling pathways. Here we show that CYLD localizes at centrosomes and basal bodies via interaction with the centrosomal protein CAP350 and demonstrate that CYLD must be both at the centrosome and catalytically active to promote ciliogenesis independently of NF-κB. In transgenic mice engineered to mimic the smallest truncation found in cylindromatosis patients, CYLD interaction with CAP350 is lost disrupting CYLD centrosome localization, which results in cilia formation defects due to impairment of basal body migration and docking. These results point to an undiscovered regulation of ciliogenesis by Lys63 ubiquitination and provide new perspectives regarding CYLD function that should be considered in the context of cylindromatosis.


Asunto(s)
Cuerpos Basales/fisiología , Comunicación Celular/fisiología , Centrosoma/fisiología , Cilios/fisiología , Cisteína Endopeptidasas/fisiología , Células Epiteliales/fisiología , Animales , Células Cultivadas , Cisteína Endopeptidasas/genética , Proteínas del Citoesqueleto/fisiología , Enzima Desubiquitinante CYLD , Células Epiteliales/citología , Femenino , Humanos , Riñón/citología , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Proteínas de Microtúbulos/fisiología , FN-kappa B/fisiología , Proteínas Nucleares/fisiología , Retina/citología , Transducción de Señal/fisiología
14.
Genetics ; 196(4): 985-99, 2014 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-24424777

RESUMEN

DNA damage by ultraviolet (UV) light poses a risk for mutagenesis and a potential hindrance for cell cycle progression. Cells cope with UV-induced DNA damage through two general strategies to repair the damaged nucleotides and to promote cell cycle progression in the presence of UV-damaged DNA. Defining the genetic pathways and understanding how they function together to enable effective tolerance to UV remains an important area of research. The structural maintenance of chromosomes (SMC) proteins form distinct complexes that maintain genome stability during chromosome segregation, homologous recombination, and DNA replication. Using a forward genetic screen, we identified two alleles of smc-5 that exacerbate UV sensitivity in Caenorhabditis elegans. Germ cells of smc-5-defective animals show reduced proliferation, sensitivity to perturbed replication, chromatin bridge formation, and accumulation of RAD-51 foci that indicate the activation of homologous recombination at DNA double-strand breaks. Mutations in the translesion synthesis polymerase polh-1 act synergistically with smc-5 mutations in provoking genome instability after UV-induced DNA damage. In contrast, the DNA damage accumulation and sensitivity of smc-5 mutant strains to replication impediments are suppressed by mutations in the C. elegans BRCA1/BARD1 homologs, brc-1 and brd-1. We propose that SMC-5/6 promotes replication fork stability and facilitates recombination-dependent repair when the BRC-1/BRD-1 complex initiates homologous recombination at stalled replication forks. Our data suggest that BRC-1/BRD-1 can both promote and antagonize genome stability depending on whether homologous recombination is initiated during DNA double-strand break repair or during replication stalling.


Asunto(s)
Proteínas de Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/crecimiento & desarrollo , Proteínas de Ciclo Celular/genética , Inestabilidad Genómica , Proteínas Supresoras de Tumor/metabolismo , Ubiquitina-Proteína Ligasas/metabolismo , Animales , Caenorhabditis elegans/genética , Proteínas de Ciclo Celular/metabolismo , Daño del ADN , Replicación del ADN/efectos de la radiación , ADN de Helmintos , Genoma de los Helmintos , Inestabilidad Genómica/efectos de la radiación , Células Germinativas/metabolismo , Mutación , Recombinasa Rad51/metabolismo , Proteínas Supresoras de Tumor/genética , Ubiquitina-Proteína Ligasas/genética
15.
Nat Cell Biol ; 16(12): 1168-1179, 2014 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-25419847

RESUMEN

Genome maintenance defects cause complex disease phenotypes characterized by developmental failure, cancer susceptibility and premature ageing. It remains poorly understood how DNA damage responses function during organismal development and maintain tissue functionality when DNA damage accumulates with ageing. Here we show that the FOXO transcription factor DAF-16 is activated in response to DNA damage during development, whereas the DNA damage responsiveness of DAF-16 declines with ageing. We find that in contrast to its established role in mediating starvation arrest, DAF-16 alleviates DNA-damage-induced developmental arrest and even in the absence of DNA repair promotes developmental growth and enhances somatic tissue functionality. We demonstrate that the GATA transcription factor EGL-27 co-regulates DAF-16 target genes in response to DNA damage and together with DAF-16 promotes developmental growth. We propose that EGL-27/GATA activity specifies DAF-16-mediated DNA damage responses to enable developmental progression and to prolong tissue functioning when DNA damage persists.


Asunto(s)
Envejecimiento , Proteínas de Caenorhabditis elegans/genética , Caenorhabditis elegans/crecimiento & desarrollo , Daño del ADN , Proteínas de Unión al ADN/genética , Regulación del Desarrollo de la Expresión Génica , Factores de Transcripción/genética , Animales , Animales Modificados Genéticamente , Proteínas de Caenorhabditis elegans/biosíntesis , Reparación del ADN/genética , Proteínas de Unión al ADN/biosíntesis , Factores de Transcripción Forkhead , Herbicidas/farmacología , Paraquat/farmacología , Transducción de Señal/genética , Factores de Transcripción/biosíntesis
16.
EMBO J ; 24(1): 97-107, 2005 Jan 12.
Artículo en Inglés | MEDLINE | ID: mdl-15616585

RESUMEN

Enhancers of yellow (e(y)) is a group of genetically and functionally related genes for proteins involved in transcriptional regulation. The e(y)3 gene of Drosophila considered here encodes a ubiquitous nuclear protein that has homologues in other metazoan species. The protein encoded by e(y)3, named Supporter of Activation of Yellow Protein (SAYP), contains an AT-hook, two PHD fingers, and a novel evolutionarily conserved domain with a transcriptional coactivator function. Mutants expressing a truncated SAYP devoid of the conserved domain die at a midembryonic stage, which suggests a crucial part for SAYP during early development. SAYP binds to numerous sites of transcriptionally active euchromatin on polytene chromosomes and coactivates transcription of euchromatin genes. Unexpectedly, SAYP is also abundant in the heterochromatin regions of the fourth chromosome and in the chromocenter, and represses the transcription of euchromatin genes translocated to heterochromatin; its PHD fingers are essential to heterochromatic silencing. Thus, SAYP plays a dual role in transcription regulation in euchromatic and heterochromatic regions.


Asunto(s)
Cromatina/metabolismo , Proteínas de Drosophila/metabolismo , Regulación de la Expresión Génica , Proteínas Nucleares/metabolismo , Factores de Transcripción/metabolismo , Transcripción Genética , Secuencia de Aminoácidos , Animales , Proteínas de Drosophila/química , Proteínas de Drosophila/genética , Drosophila melanogaster/embriología , Drosophila melanogaster/genética , Drosophila melanogaster/fisiología , Femenino , Genes Reporteros , Humanos , Hibridación in Situ , Datos de Secuencia Molecular , Mutación , Proteínas Nucleares/genética , Unión Proteica , Estructura Terciaria de Proteína , Alineación de Secuencia , Factores de Transcripción/química , Factores de Transcripción/genética , Transgenes , Técnicas del Sistema de Dos Híbridos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA