Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 98
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Acta Neuropathol ; 147(1): 94, 2024 06 04.
Artículo en Inglés | MEDLINE | ID: mdl-38833073

RESUMEN

A recent large genome-wide association study has identified EGFR (encoding the epidermal growth factor EGFR) as a new genetic risk factor for late-onset AD. SHIP2, encoded by INPPL1, is taking part in the signalling and interactome of several growth factor receptors, such as the EGFR. While INPPL1 has been identified as one of the most significant genes whose RNA expression correlates with cognitive decline, the potential alteration of SHIP2 expression and localization during the progression of AD remains largely unknown. Here we report that gene expression of both EGFR and INPPL1 was upregulated in AD brains. SHIP2 immunoreactivity was predominantly detected in plaque-associated astrocytes and dystrophic neurites and its increase was correlated with amyloid load in the brain of human AD and of 5xFAD transgenic mouse model of AD. While mRNA of INPPL1 was increased in AD, SHIP2 protein undergoes a significant solubility change being depleted from the soluble fraction of AD brain homogenates and co-enriched with EGFR in the insoluble fraction. Using FRET-based flow cytometry biosensor assay for tau-tau interaction, overexpression of SHIP2 significantly increased the FRET signal while siRNA-mediated downexpression of SHIP2 significantly decreased FRET signal. Genetic association analyses suggest that some variants in INPPL1 locus are associated with the level of CSF pTau. Our data support the hypothesis that SHIP2 is an intermediate key player of EGFR and AD pathology linking amyloid and tau pathologies in human AD.


Asunto(s)
Enfermedad de Alzheimer , Encéfalo , Progresión de la Enfermedad , Receptores ErbB , Fosfatidilinositol-3,4,5-Trifosfato 5-Fosfatasas , Anciano , Anciano de 80 o más Años , Animales , Femenino , Humanos , Masculino , Ratones , Enfermedad de Alzheimer/patología , Enfermedad de Alzheimer/genética , Enfermedad de Alzheimer/metabolismo , Encéfalo/patología , Encéfalo/metabolismo , Receptores ErbB/genética , Receptores ErbB/metabolismo , Expresión Génica , Ratones Transgénicos , Fosfatidilinositol-3,4,5-Trifosfato 5-Fosfatasas/genética , Fosfatidilinositol-3,4,5-Trifosfato 5-Fosfatasas/metabolismo , Solubilidad , Proteínas tau/metabolismo , Proteínas tau/genética
2.
EMBO J ; 36(17): 2567-2580, 2017 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-28701483

RESUMEN

The role of second messengers in the diversion of cellular processes by pathogens remains poorly studied despite their importance. Among these, Ca2+ virtually regulates all known cell processes, including cytoskeletal reorganization, inflammation, or cell death pathways. Under physiological conditions, cytosolic Ca2+ increases are transient and oscillatory, defining the so-called Ca2+ code that links cell responses to specific Ca2+ oscillatory patterns. During cell invasion, Shigella induces atypical local and global Ca2+ signals. Here, we show that by hydrolyzing phosphatidylinositol-(4,5)bisphosphate, the Shigella type III effector IpgD dampens inositol-(1,4,5)trisphosphate (InsP3) levels. By modifying InsP3 dynamics and diffusion, IpgD favors the elicitation of long-lasting local Ca2+ signals at Shigella invasion sites and converts Shigella-induced global oscillatory responses into erratic responses with atypical dynamics and amplitude. Furthermore, IpgD eventually inhibits InsP3-dependent responses during prolonged infection kinetics. IpgD thus acts as a pathogen regulator of the Ca2+ code implicated in a versatility of cell functions. Consistent with this function, IpgD prevents the Ca2+-dependent activation of calpain, thereby preserving the integrity of cell adhesion structures during the early stages of infection.


Asunto(s)
Proteínas Bacterianas/metabolismo , Calcio/metabolismo , Disentería Bacilar/metabolismo , Interacciones Huésped-Patógeno , Monoéster Fosfórico Hidrolasas/metabolismo , Fosfotransferasas (Aceptor de Grupo Alcohol)/metabolismo , Shigella flexneri/fisiología , Calpaína/metabolismo , Adhesión Celular , Células HeLa , Humanos , Transducción de Señal
3.
J Cell Sci ; 131(16)2018 08 16.
Artículo en Inglés | MEDLINE | ID: mdl-30012834

RESUMEN

Metastasis of breast cancer cells to distant organs is responsible for ∼50% of breast cancer-related deaths in women worldwide. SHIP2 (also known as INPPL1) is a phosphoinositide 5-phosphatase for phosphatidylinositol (3,4,5)-trisphosphate [PI(3,4,5)P3] and phosphatidylinositol (4,5)-bisphosphate [PI(4,5)P2]. Here we show, through depletion of SHIP2 in triple negative MDA-MB-231 cells and the use of SHIP2 inhibitors, that cell migration appears to be positively controlled by SHIP2. The effect of SHIP2 on migration, as observed in MDA-MB-231 cells, appears to be mediated by PI(3,4)P2. Adhesion on fibronectin is always increased in SHIP2-depleted cells. Apoptosis measured in MDA-MB-231 cells is also increased in SHIP2-depleted cells as compared to control cells. In xenograft mice, SHIP2-depleted MDA-MB-231 cells form significantly smaller tumors than those formed by control cells and less metastasis is detected in lung sections. Our data reveal a general role for SHIP2 in the control of cell migration in breast cancer cells and a second messenger role for PI(3,4)P2 in the migration mechanism. In MDA-MB-231 cells, SHIP2 has a function in apoptosis in cells incubated in vitro and in mouse tumor-derived cells, which could account for its role on tumor growth determined in vivo.


Asunto(s)
Antineoplásicos/farmacología , Neoplasias de la Mama/patología , Movimiento Celular/efectos de los fármacos , Inhibidores Enzimáticos/farmacología , Fosfatidilinositol-3,4,5-Trifosfato 5-Fosfatasas/antagonistas & inhibidores , Animales , Movimiento Celular/genética , Femenino , Humanos , Células MCF-7 , Ratones , Ratones Endogámicos NOD , Ratones SCID , Metástasis de la Neoplasia , Fosfatidilinositol-3,4,5-Trifosfato 5-Fosfatasas/genética , Fosfatidilinositol-3,4,5-Trifosfato 5-Fosfatasas/metabolismo , Células Tumorales Cultivadas , Ensayos Antitumor por Modelo de Xenoinjerto
4.
J Lipid Res ; 60(2): 276-286, 2019 02.
Artículo en Inglés | MEDLINE | ID: mdl-30194087

RESUMEN

Phosphoinositides (PIs) are recognized as major signaling molecules in many different functions of eukaryotic cells. PIs can be dephosphorylated by multiple phosphatase activities at the 5-, 4-, and 3- positions. Human PI 5-phosphatases belong to a family of 10 members. Except for inositol polyphosphate 5-phosphatase A, they all catalyze the dephosphorylation of PI(4,5)P2 and/or PI(3,4,5)P3 at the 5- position. PI 5-phosphatases thus directly control the levels of PI(3,4,5)P3 and participate in the fine-tuning regulatory mechanisms of PI(3,4)P2 and PI(4,5)P2 Second messenger functions have been demonstrated for PI(3,4)P2 in invadopodium maturation and lamellipodia formation. PI 5-phosphatases can use several substrates on isolated enzymes, and it has been challenging to establish their real substrate in vivo. PI(4,5)P2 has multiple functions in signaling, including interacting with scaffold proteins, ion channels, and cytoskeleton proteins. PI 5-phosphatase isoenzymes have been individually implicated in human diseases, such as the oculocerebrorenal syndrome of Lowe, through mechanisms that include lipid control. Oncogenic and tumor-suppressive functions of PI 5-phosphatases have also been reported in different cell contexts. The mechanisms responsible for genetic diseases and for oncogenic or tumor-suppressive functions are not fully understood. The regulation of PI 5-phosphatases is thus crucial in understanding cell functions.


Asunto(s)
Células/citología , Células/metabolismo , Enfermedad , Fosfatidilinositoles/metabolismo , Monoéster Fosfórico Hidrolasas/metabolismo , Animales , Células/enzimología , Células/patología , Humanos , Transducción de Señal
5.
J Cell Sci ; 129(6): 1101-14, 2016 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-26826186

RESUMEN

Phosphoinositides, particularly phosphatidylinositol (3,4,5)-trisphosphate [PI(3,4,5)P3] and phosphatidylinositol 4,5-bisphosphate [PI(4,5)P2], are recognized by SHIP2 (also known as INPPL1) a member of the inositol polyphosphate 5-phosphatase family. SHIP2 dephosphorylates PI(3,4,5)P3 to form PI(3,4)P2; the latter interacts with specific target proteins (e.g. lamellipodin). Although the preferred SHIP2 substrate is PI(3,4,5)P3, PI(4,5)P2 can also be dephosphorylated by this enzyme to phosphatidylinositol 4-phosphate (PI4P). Through depletion of SHIP2 in the glioblastoma cell line 1321 N1, we show that SHIP2 inhibits cell migration. In different glioblastoma cell lines and primary cultures, SHIP2 staining at the plasma membrane partly overlaps with PI(4,5)P2 immunoreactivity. PI(4,5)P2 was upregulated in SHIP2-deficient N1 cells as compared to control cells; in contrast, PI4P was very much decreased in SHIP2-deficient cells. Therefore, SHIP2 controls both PI(3,4,5)P3 and PI(4,5)P2 levels in intact cells. In 1321 N1 cells, the PI(4,5)P2-binding protein myosin-1c was identified as a new interactor of SHIP2. Regulation of PI(4,5)P2 and PI4P content by SHIP2 controls 1321 N1 cell migration through the organization of focal adhesions. Thus, our results reveal a new role of SHIP2 in the control of PI(4,5)P2, PI4P and cell migration in PTEN-deficient glioblastoma 1321 N1 cells.


Asunto(s)
Membrana Celular/metabolismo , Movimiento Celular , Glioblastoma/enzimología , Fosfatidilinositol 4,5-Difosfato/metabolismo , Fosfatidilinositol-3,4,5-Trifosfato 5-Fosfatasas/metabolismo , Línea Celular Tumoral , Membrana Celular/genética , Adhesiones Focales/genética , Adhesiones Focales/metabolismo , Glioblastoma/genética , Glioblastoma/metabolismo , Glioblastoma/fisiopatología , Humanos , Fosfatidilinositol-3,4,5-Trifosfato 5-Fosfatasas/genética
6.
Hum Mutat ; 38(12): 1731-1739, 2017 12.
Artículo en Inglés | MEDLINE | ID: mdl-28869677

RESUMEN

The SH2 domain containing inositol phosphatase 2 (SHIP2) dephosphorylates PI(3,4,5)P3 to generate PI(3,4)P2, a lipid involved in the control of cell migration and adhesion. The INPPL1 gene that encodes SHIP2 has been found to be mutated in several cases of opsismodysplasia (OPS), a rare autosomal recessive chondrodysplasia characterized by growth plate defects and delayed bone maturation. Reported mutations often result in premature stop codons or missense mutations in SHIP2 catalytic domain. SHIP2 biochemical properties are known from studies in cancer cells; its role in endochondral ossification is unknown. Here, we report two novel mutations in the INPPL1 gene and show that cell migration is very much decreased in fibroblasts derived from three OPS patients as compared with control individuals. In contrast, cell adhesion on fibronectin is increased in OPS fibroblasts. An inhibitory effect on migration was also observed when normal fibroblasts were incubated in the presence of a SHIP2 competitive inhibitor. We conclude that both migration and adhesion are very much disrupted in OPS-derived fibroblasts. It is suggested that signaling events linked to migration and particularly to adhesion, which are lost in OPS patients, would prevent normal endochondral ossification.


Asunto(s)
Adhesión Celular/genética , Movimiento Celular/genética , Osteocondrodisplasias/enzimología , Fosfatidilinositol-3,4,5-Trifosfato 5-Fosfatasas/genética , Transducción de Señal , Codón sin Sentido , Femenino , Fibroblastos/metabolismo , Genes Reporteros , Homocigoto , Humanos , Osteocondrodisplasias/diagnóstico por imagen , Osteocondrodisplasias/genética , Fenotipo , Fosfatidilinositol-3,4,5-Trifosfato 5-Fosfatasas/metabolismo , Embarazo
7.
Chembiochem ; 18(3): 233-247, 2017 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-27907247

RESUMEN

SHIP2 is a phosphatase that acts at the 5-position of phosphatidylinositol 3,4,5-trisphosphate. It is one of several enzymes that catalyse dephosphorylation at the 5-position of phosphoinositides or inositol phosphates. SHIP2 has a confirmed role in opsismodysplasia, a disease of bone development, but also interacts with proteins involved in insulin signalling, cytoskeletal function (thus having an impact on endocytosis, adhesion, proliferation and apoptosis) and immune system function. The structure of three domains (constituting about 38 % of the protein) is known. Inhibitors of SHIP2 activity have been designed to interact with the catalytic domain with sub-micromolar IC50 values: these come from a range of structural classes and have been shown to have in vivo effects consistent with SHIP2 inhibition. Much remains unknown about the roles of SHIP2, and possible future directions for research are indicated.


Asunto(s)
Fosfatidilinositol-3,4,5-Trifosfato 5-Fosfatasas/metabolismo , Sitios de Unión , Dominio Catalítico , Humanos , Sistema Inmunológico/metabolismo , Insulina/metabolismo , Ligandos , Osteocondrodisplasias/metabolismo , Osteocondrodisplasias/patología , Fosfatos de Fosfatidilinositol/metabolismo , Fosfatidilinositol-3,4,5-Trifosfato 5-Fosfatasas/antagonistas & inhibidores , Fosfatidilinositol-3,4,5-Trifosfato 5-Fosfatasas/química , Transducción de Señal
8.
Biochem Biophys Res Commun ; 476(4): 508-514, 2016 08 05.
Artículo en Inglés | MEDLINE | ID: mdl-27246739

RESUMEN

The phosphoinositide 5-phosphatases consist of several enzymes that have been shown to modulate cell migration and invasion. SHIP2, one family member, is known to interact with growth factor receptors and cytoskeletal proteins. In a human model of glioblastoma 1321 N1 cells, we recently identified Myo1c as a new interactor of SHIP2. This was shown in a complex of proteins also containing filamin A. We show here that SHIP2 localization at lamellipodia and ruffles is impaired in Myo1c depleted cells. In the absence of Myo1c, N1 cells tend to associate to form clusters. Cell migration is very much reduced in Myo1c depleted cells, concomitantly with a decrease in FAK Tyr397 phosphorylation, focal adhesion length and PI(4,5)P2 immunostaining. In N1 cells, Myo1c is thus important for lamellipodia formation to assemble a protein complex containing SHIP2 to facilitate cell migration.


Asunto(s)
Movimiento Celular/fisiología , Glioblastoma/metabolismo , Glioblastoma/patología , Miosina Tipo I/metabolismo , Fosfatidilinositol-3,4,5-Trifosfato 5-Fosfatasas/metabolismo , Línea Celular Tumoral , Polaridad Celular , Proteína-Tirosina Quinasas de Adhesión Focal/metabolismo , Humanos , Inmunohistoquímica , Miosina Tipo I/antagonistas & inhibidores , Miosina Tipo I/genética , Fosfatidilinositol 4,5-Difosfato/metabolismo , Seudópodos/metabolismo , ARN Interferente Pequeño/genética
9.
Brain ; 137(Pt 2): 537-52, 2014 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-24401760

RESUMEN

ITPKB phosphorylates inositol 1,4,5-trisphosphate into inositol 1,3,4,5-tetrakisphosphate and controls signal transduction in various hematopoietic cells. Surprisingly, it has been reported that the ITPKB messenger RNA level is significantly increased in the cerebral cortex of patients with Alzheimer's disease, compared with control subjects. As extracellular signal-regulated kinases 1/2 activation is increased in the Alzheimer brain and as ITPKB is a regulator of extracellular signal-regulated kinases 1/2 activation in some hematopoietic cells, we tested whether this increased activation in Alzheimer's disease might be related to an increased activity of ITPKB. We show here that ITPKB protein level was increased 3-fold in the cerebral cortex of most patients with Alzheimer's disease compared with control subjects, and accumulated in dystrophic neurites associated to amyloid plaques. In mouse Neuro-2a neuroblastoma cells, Itpkb overexpression was associated with increased cell apoptosis and increased ß-secretase 1 activity leading to overproduction of amyloid-ß peptides. In this cellular model, an inhibitor of mitogen-activated kinase kinases 1/2 completely prevented overproduction of amyloid-ß peptides. Transgenic overexpression of ITPKB in mouse forebrain neurons was not sufficient to induce amyloid plaque formation or tau hyperphosphorylation. However, in the 5X familial Alzheimer's disease mouse model, neuronal ITPKB overexpression significantly increased extracellular signal-regulated kinases 1/2 activation and ß-secretase 1 activity, resulting in exacerbated Alzheimer's disease pathology as shown by increased astrogliosis, amyloid-ß40 peptide production and tau hyperphosphorylation. No impact on pathology was observed in the 5X familial Alzheimer's disease mouse model when a catalytically inactive ITPKB protein was overexpressed. Together, our results point to the ITPKB/inositol 1,3,4,5-tetrakisphosphate/extracellular signal-regulated kinases 1/2 signalling pathway as an important regulator of neuronal cell apoptosis, APP processing and tau phosphorylation in Alzheimer's disease, and suggest that ITPKB could represent a new target for reducing pathology in human patients with Alzheimer's disease with ITPKB expression.


Asunto(s)
Enfermedad de Alzheimer/enzimología , Enfermedad de Alzheimer/patología , Encéfalo/enzimología , Encéfalo/patología , Fosfotransferasas (Aceptor de Grupo Alcohol)/biosíntesis , Anciano , Anciano de 80 o más Años , Animales , Apoptosis/fisiología , Línea Celular Tumoral , Femenino , Humanos , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Persona de Mediana Edad , Neuritas/patología , Neuroblastoma/enzimología , Neuroblastoma/patología , Fosfotransferasas (Aceptor de Grupo Alcohol)/fisiología , Placa Amiloide/patología
10.
Bioessays ; 35(8): 733-43, 2013 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-23650141

RESUMEN

The number of cellular events identified as being directly or indirectly modulated by phosphoinositides dramatically increased in the recent years. Part of the complexity results from the fact that the seven phosphoinositides play second messenger functions in many different areas of growth factors and insulin signaling, cytoskeletal organization, membrane dynamics, trafficking, or nuclear signaling. PtdIns(3,4)P2 is commonly reported as a product of the SH2 domain-containing inositol 5-phosphatases 1/2 (SHIP1 and SHIP2) that dephosphorylate PtdIns(3,4,5)P3 at the 5-position. Here we discuss recent interest in PtdIns(3,4)P2 signaling highlighting its involvement in key cellular mechanisms such as cell adhesion, migration, and cytoskeletal regulation. We question and discuss the involvement of SHIP2 either as a PI 5-phosphatase or as a scaffold protein in insulin signaling, cytoskeletal dynamics, and endocytosis of growth factor receptors.


Asunto(s)
Regulación Enzimológica de la Expresión Génica , Fosfatos de Fosfatidilinositol/metabolismo , Monoéster Fosfórico Hidrolasas/fisiología , Animales , Adhesión Celular , Línea Celular Tumoral , Movimiento Celular , Núcleo Celular/metabolismo , Citoesqueleto/metabolismo , Endocitosis , Activación Enzimática , Receptores ErbB/metabolismo , Humanos , Inositol Polifosfato 5-Fosfatasas , Insulina/metabolismo , Fosfatidilinositol-3,4,5-Trifosfato 5-Fosfatasas , Fosforilación , Transducción de Señal , Ubiquitina/metabolismo
12.
Bioessays ; 34(8): 634-42, 2012 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-22641604

RESUMEN

Phosphoinositide (PI) phosphatases such as the SH2 domain-containing inositol 5-phosphatases 1/2 (SHIP1 and 2) are important signalling enzymes in human physiopathology. SHIP1/2 interact with a large number of immune and growth factor receptors. Tyrosine phosphorylation of SHIP1/2 has been considered to be the determining regulatory modification. However, here we present a hypothesis, based on recent key publications, highlighting the determining role of Ser/Thr phosphorylation in regulating several key properties of SHIP1/2. Since a subunit of the Ser/Thr phosphatase PP2A has been shown to interact with SHIP2, a putative mechanism for reversing SHIP2 Ser/Thr phosphorylation can be anticipated. PI phosphatases are potential target molecules in human diseases, particularly, but not exclusively, in cancer and diabetes. Therefore, this novel regulatory mechanism deserves further attention in the hunt for discovering novel or complementary therapeutic strategies. This mechanism may be more broadly involved in regulating PI signalling in the case of synaptojanin1 or the phosphatase, tensin homolog, deleted on chromosome TEN.


Asunto(s)
Monoéster Fosfórico Hidrolasas/metabolismo , Serina/metabolismo , Transducción de Señal , Treonina/metabolismo , Animales , Diferenciación Celular , Membrana Celular/metabolismo , Núcleo Celular/genética , Núcleo Celular/metabolismo , Activación Enzimática , Humanos , Inositol Polifosfato 5-Fosfatasas , Ratones , Ratones Noqueados , Fosfohidrolasa PTEN/genética , Fosfohidrolasa PTEN/metabolismo , Fosfatos de Fosfatidilinositol/metabolismo , Fosfatidilinositol-3,4,5-Trifosfato 5-Fosfatasas , Monoéster Fosfórico Hidrolasas/genética , Fosforilación , Mapeo de Interacción de Proteínas , Especificidad por Sustrato , Tirosina/metabolismo
13.
Biochem J ; 453(3): e3-4, 2013 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-23849059

RESUMEN

Highly phosphorylated inositol pyrophosphates are present in the cells of many organisms such as yeast, Dictyostelium and mammals. They can act as signal molecules in growth factor and insulin signalling both in cultured cells and in intact mice. Their action involves protein pyrophosphorylation or binding to multiple protein interactors such as PH (pleckstrin homology)-domain-containing proteins. One key enzyme in their synthesis, PPIP5K (diphosphoinositol pentakisphosphate kinase) 1/2, can phosphorylate InsP6 and 5-InsP7 to 1-InsP7 and InsP8 respectively. Stephen Shears's laboratory reported in this issue of the Biochemical Journal that PPIP5K1's unexpectedly high affinity for PtdIns(3,4,5)P3, which is synthesized at the plasma membrane, provides a recruitment mechanism for this enzyme in response to growth factor receptor activation. In competition experiments, they observed that PtdIns(3,4,5)P3 binding to PPIP5K1 could be displaced by inositol pyrophosphates and that PPIP5K1 substrates were more potent inhibitors than PPIP5K1 products. Those findings reveal a mechanism for localized depletion of InsP6 and 5-InsP7 at the plasma membrane and further translocation of PtdIns(3,4,5)P3-binding PH-domain-containing proteins.


Asunto(s)
Fosfatos de Fosfatidilinositol/metabolismo , Fosfotransferasas (Aceptor del Grupo Fosfato)/metabolismo , Animales , Humanos
14.
Biochem J ; 455(2): 195-206, 2013 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-23905686

RESUMEN

PIKfyve (FYVE domain-containing phosphatidylinositol 3-phosphate 5-kinase), the lipid kinase that phosphorylates PtdIns3P to PtdIns(3,5)P2, has been implicated in insulin-stimulated glucose uptake. We investigated whether PIKfyve could also be involved in contraction/AMPK (AMP-activated protein kinase)-stimulated glucose uptake in skeletal muscle. Incubation of rat epitrochlearis muscles with YM201636, a selective PIKfyve inhibitor, reduced contraction- and AICAriboside (5-amino-4-imidazolecarboxamide riboside)-stimulated glucose uptake. Consistently, PIKfyve knockdown in C2C12 myotubes reduced AICAriboside-stimulated glucose transport. Furthermore, muscle contraction increased PtdIns(3,5)P2 levels and PIKfyve phosphorylation. AMPK phosphorylated PIKfyve at Ser307 both in vitro and in intact cells. Following subcellular fractionation, PIKfyve recovery in a crude intracellular membrane fraction was increased in contracting versus resting muscles. Also in opossum kidney cells, wild-type, but not S307A mutant, PIKfyve was recruited to endosomal vesicles in response to AMPK activation. We propose that PIKfyve activity is required for the stimulation of skeletal muscle glucose uptake by contraction/AMPK activation. PIKfyve is a new AMPK substrate whose phosphorylation at Ser307 could promote PIKfyve translocation to endosomes for PtdIns(3,5)P2 synthesis to facilitate GLUT4 (glucose transporter 4) translocation.


Asunto(s)
Proteínas Quinasas Activadas por AMP/metabolismo , Glucosa/metabolismo , Contracción Muscular/fisiología , Músculo Esquelético/enzimología , Músculo Esquelético/metabolismo , Fosfatidilinositol 3-Quinasa/metabolismo , Proteínas Quinasas Activadas por AMP/genética , Aminoimidazol Carboxamida/análogos & derivados , Aminoimidazol Carboxamida/metabolismo , Animales , Línea Celular , Transportador de Glucosa de Tipo 4/metabolismo , Humanos , Insulina/metabolismo , Masculino , Zarigüeyas , Fosfatidilinositol 3-Quinasa/genética , Fosfatos de Fosfatidilinositol/metabolismo , Fosforilación , Ratas , Ratas Wistar
15.
BBA Adv ; 4: 100105, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37842182

RESUMEN

INPP5K (inositol polyphosphate 5-phosphatase K) is an endoplasmic reticulum (ER)-resident enzyme that acts as a phosphoinositide (PI) 5-phosphatase, capable of dephosphorylating various PIs including PI 4,5-bisphosphate (PI(4,5)P2), a key phosphoinositide found in the plasma membrane. Given its ER localization and substrate specificity, INPP5K may play a role in ER-plasma membrane contact sites. Furthermore, PI(4,5)P2 serves as a substrate for phospholipase C, an enzyme activated downstream of extracellular agonists acting on Gq-coupled receptors or tyrosine-kinase receptors, leading to IP3 production and subsequent release of Ca2+ from the ER, the primary intracellular Ca2+ storage organelle. In this study, we investigated the impact of INPP5K on ER Ca2+ dynamics using a previously established INPP5K-knockdown U-251 MG glioblastoma cell model. We here describe that loss of INPP5K impairs agonist-induced, IP3 receptor (IP3R)-mediated Ca2+ mobilization in intact cells, while the ER Ca2+ content and store-operated Ca2+ influx remain unaffected. To further elucidate the underlying mechanisms, we examined Ca2+ release in permeabilized cells stimulated with exogenous IP3. Interestingly, the absence of INPP5K also disrupted IP3-induced Ca2+ release events. These results suggest that INPP5K may directly influence IP3R activity through mechanisms yet to be resolved. The findings from this study point towards role of INPP5K in modulating ER calcium dynamics, particularly in relation to IP3-mediated signaling pathways. However, further work is needed to establish the general nature of our findings and to unravel the exact molecular mechanisms underlying the interplay between INNP5K function and Ca2+ signaling.

16.
J Cell Mol Med ; 16(2): 306-17, 2012 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-21435173

RESUMEN

ENDOGLIN/CD105 (ENG) is a transmembrane glycoprotein and an auxiliary unit of the transforming growth factor-ß (TGF-ß); receptor, expressed predominantly in vascular endothelium. Noteworthy, Eng mRNA expression has been reported also in Kit(+) interstitial cells of Cajal (ICC) in the mouse intestine. Gastrointestinal stromal tumours (GIST) are thought to derive from ICC. Here we have investigated Eng expression in the Kit(K641E) mouse GIST model, in human GIST and in the Ba/F3 cell model. In wild type (WT) mouse antrum, Eng immunoreactivity (-ir) was detected in CD34(+) /CD31(+) endothelium and in Kit(+) ICC. In Kit(K641E) mice, hyperplasia of Kit(+) cells made Eng-ir even more evident. Quantitative PCR confirmed the increased expression of Eng transcript in Kit(K641E) mice. On human GIST TMA, 26/49 cases stained positive for ENG. Strong ENG staining was associated with malignant and high-risk tumours. ENG negative cases were predominantly of the epithelioid type or harboured PDGFRA mutation. In vitro, Eng mRNA was up-regulated in Ba/F3 cell lines stably expressing various oncogenic Kit mutations (K641E, del559, del814). This effect appeared to be independent of Kit activation, as neither the stimulation of WT Kit by its ligand SCF, nor the inhibition of Kit autophosphorylation by imatinib mesylate in oncogenic mutants, altered Eng expression. Elevated Eng expression in Kit oncogenic mutants appeared rather to be indirectly mediated by DNA hypomethylation, because treatment with the demethylating agent 5-Aza/dC increased Eng mRNA expression in Kit(WT) cells. ENG expression in ICC and in GIST deserves further consideration as ENG is emerging as a potential target for cancer therapy.


Asunto(s)
Antígenos CD/metabolismo , Tumores del Estroma Gastrointestinal/metabolismo , Tracto Gastrointestinal/metabolismo , Proteínas Proto-Oncogénicas c-kit/metabolismo , Receptores de Superficie Celular/metabolismo , Animales , Antígenos CD34/metabolismo , Azacitidina/análogos & derivados , Azacitidina/farmacología , Benzamidas , Línea Celular Tumoral , Metilación de ADN , Decitabina , Endoglina , Endotelio Vascular , Tumores del Estroma Gastrointestinal/genética , Tumores del Estroma Gastrointestinal/patología , Tracto Gastrointestinal/patología , Regulación Neoplásica de la Expresión Génica , Humanos , Mesilato de Imatinib , Células Intersticiales de Cajal/metabolismo , Ratones , Ratones Transgénicos , Piperazinas/farmacología , Molécula-1 de Adhesión Celular Endotelial de Plaqueta/metabolismo , Proteínas Proto-Oncogénicas c-kit/genética , Pirimidinas/farmacología , ARN Mensajero/metabolismo , Transducción de Señal
17.
J Virol ; 85(14): 7402-10, 2011 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-21543482

RESUMEN

After fusing with the plasma membrane, enveloped poxvirus virions form actin-filled membranous protrusions, called tails, beneath themselves and move toward adjacent uninfected cells. While much is known about the host and viral proteins that mediate formation of actin tails, much less is known about the factors controlling release. We found that the phosphoinositide 5-phosphatase SHIP2 localizes to actin tails. Localization requires phosphotyrosine, Abl and Src family tyrosine kinases, and neural Wiskott-Aldrich syndrome protein (N-WASP) but not the Arp2/Arp3 complex or actin. Cells lacking SHIP2 have normal actin tails but release more virus. Moreover, cells infected with viral strains with mutations in the release inhibitor A34 release more virus but recruit less SHIP2 to tails. Thus, the inhibitory effects of A34 on virus release are mediated by SHIP2. Together, these data suggest that SHIP2 and A34 may act as gatekeepers to regulate dissemination of poxviruses when environmental conditions are conducive.


Asunto(s)
Monoéster Fosfórico Hidrolasas/fisiología , Virus Vaccinia/fisiología , Animales , Línea Celular , Ensayo Cometa , Humanos , Ratones , Fosfatidilinositol-3,4,5-Trifosfato 5-Fosfatasas , Interferencia de ARN
18.
Biochem J ; 439(3): 391-401, 2011 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-21770892

RESUMEN

PtdIns(3,4,5)P3 and PtdIns(3,4)P2 are major signalling molecules in mammalian cell biology. PtdIns(3,4)P2 can be produced by PI3Ks [PI (phosphoinositide) 3-kinases], but also by PI 5-phosphatases including SHIP2 [SH2 (Src homology 2)-domain-containing inositol phosphatase 2]. Proteomic studies in human cells revealed that SHIP2 can be phosphorylated at more than 20 sites, but their individual function is unknown. In a model of PTEN (phosphatase and tensin homologue deleted on chromosome 10)-null astrocytoma cells, lowering SHIP2 expression leads to increased PtdIns(3,4,5)P3 levels and Akt phosphorylation. MS analysis identified SHIP2 phosphosites on Ser132, Thr1254 and Ser1258; phosphotyrosine-containing sites were undetectable. By immunostaining, total SHIP2 concentrated in the perinuclear area and in the nucleus, whereas SHIP2 phosphorylated on Ser132 was in the cytoplasm, the nucleus and nuclear speckles, depending on the cell cycle stage. SHIP2 phosphorylated on Ser132 demonstrated PtdIns(4,5)P2 phosphatase activity. Endogenous phospho-SHIP2 (Ser132) showed an overlap with PtdIns(4,5)P2 staining in nuclear speckles. SHIP2 S132A was less sensitive to C-terminal degradation and more resistant to calpain as compared with wild-type enzyme. We have identified nuclear lamin A/C as a novel SHIP2 interactor. We suggest that the function of SHIP2 is different at the plasma membrane where it recognizes PtdIns(3,4,5)P3, and in the nucleus where it may interact with PtdIns(4,5)P2, particularly in speckles.


Asunto(s)
Núcleo Celular/enzimología , Proteínas Nucleares/metabolismo , Monoéster Fosfórico Hidrolasas/metabolismo , Serina/metabolismo , Animales , Células COS , Línea Celular Tumoral , Núcleo Celular/metabolismo , Chlorocebus aethiops , Humanos , Proteínas Nucleares/química , Fosfatidilinositol-3,4,5-Trifosfato 5-Fosfatasas , Monoéster Fosfórico Hidrolasas/química , Fosforilación , Estabilidad Proteica
19.
Cancers (Basel) ; 14(20)2022 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-36291834

RESUMEN

GISTs are sarcomas of the gastrointestinal tract often associated with gain-of-function mutations in KIT or PDGFRA receptor genes. While most GISTs initially respond to tyrosine kinase inhibitors, relapses due to acquired resistance frequently occur. The induction of ferroptosis, an iron-dependent form of non-apoptotic cell death, emerged as a novel therapeutic approach in cancers and remains poorly characterized in GISTs. We studied hallmarks of ferroptosis, i.e., lipid peroxidation, iron and glutathione content, and GPX4 protein expression in imatinib-sensitive (GIST882) and -resistant (GIST48) GIST cell lines. GIST cells were highly sensitive to the induction of ferroptosis by RSL3, which was reversed by liproxstatin and deferoxamine. Lipid peroxidation and ferroptosis were mediated by VP and CA3 in GIST cells through a significant decrease in antioxidant defenses. Moreover, VP, but surprisingly not CA3, inhibited a series of target genes downstream of YAP in GIST cells. The ferroptosis marker TFRC was also investigated by immunohistochemistry in GIST tissue arrays. TFRC expression was observed in all samples. High TFRC expression was positively correlated with high-risk GISTs, elevated mitotic count, and YAP nuclear localization, reflecting YAP activation. This study highlights ferroptosis as a novel cell death mechanism in GISTs, and a potential therapeutic target to overcome resistance to tyrosine kinase inhibitors.

20.
Pflugers Arch ; 462(6): 871-83, 2011 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-21938401

RESUMEN

Inositol Inpp5k (or Pps, SKIP) is a member of the inositol polyphosphate 5-phosphatases family with a poorly characterized function in vivo. In this study, we explored the function of this inositol 5-phosphatase in mice and cells overexpressing the 42-kDa mouse Inpp5k protein. Inpp5k transgenic mice present defects in water metabolism characterized by a reduced plasma osmolality at baseline, a delayed urinary water excretion following a water load, and an increased acute response to vasopressin. These defects are associated with the expression of the Inpp5k transgene in renal collecting ducts and with alterations in the arginine vasopressin/aquaporin-2 signalling pathway in this tubular segment. Analysis in a mouse collecting duct mCCD cell line revealed that Inpp5k overexpression leads to increased expression of the arginine vasopressin receptor type 2 and increased cAMP response to arginine vasopressin, providing a basis for increased aquaporin-2 expression and plasma membrane localization with increased osmotically induced water transport. Altogether, our results indicate that Inpp5k 5-phosphatase is important for the control of the arginine vasopressin/aquaporin-2 signalling pathway and water transport in kidney collecting ducts.


Asunto(s)
Acuaporina 2/metabolismo , Túbulos Renales Colectores/metabolismo , Monoéster Fosfórico Hidrolasas/metabolismo , Vasopresinas/metabolismo , Equilibrio Hidroelectrolítico/fisiología , Animales , Células Cultivadas , Femenino , Humanos , Túbulos Renales Colectores/citología , Ratones , Ratones Endogámicos BALB C , Ratones Endogámicos C57BL , Ratones Transgénicos , Monoéster Fosfórico Hidrolasas/genética , Transducción de Señal/fisiología , Agua/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA