Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 60
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
J Strength Cond Res ; 2024 Jul 02.
Artículo en Inglés | MEDLINE | ID: mdl-38953795

RESUMEN

ABSTRACT: McMahon, G, Best, N, Coulter, T, and Erskine, RM. Increased neuromuscular activation, force output and resistance exercise volume when using 5-minute compared with 2-minute rest intervals between the sets. J Strength Cond Res XX(X): 000-000, 2024-Longer rest intervals between resistance exercise (RE) sets may promote greater muscle hypertrophy and strength gains over time by facilitating the completion of greater training volume and intensity. However, little is known about the acute neuromuscular responses to RE sets incorporating longer vs. shorter rest intervals. Using a within-subject, crossover design, 8 healthy, young subjects completed 2 separate acute bouts of 4 sets of 8 × 3-s maximal isometric contractions using either a 2-minute (REST-2) or 5-minute (REST-5) rest interval between sets. Peak torque (PT) and electromyography (EMG) were measured pre and 5 minutes postexercise. Peak torque and mean torque (MT), EMG, mean, and median frequencies were measured during each set, whereas blood lactate (BLa), heart rate (HR), and rating of perceived exertion (RPE) were measured following each set. Peak torque and MT were lower (p < 0.05) in sets 3 and 4, and sets 2-4 in REST-2 compared with REST-5, respectively. Electromyography and BL were lower and higher, respectively, in REST-2 vs. REST-5. There was no main effect of condition on HR or RPE. Pre-to-post exercise reductions in PT (-17 ± 9% vs. -4 ± 7%) and EMG (-29 ± 14% vs. -10 ± 7%) were greater (p < 0.001) in REST-2 vs. REST-5. Total exercise volume was less in REST-2 vs. REST-5 (9,748 ± 2296 N·m-1 vs. 11,212 ± 2513 N·m-1, p < 0.001). These results suggest that incorporating 5-minute between-set rest intervals into a resistance exercise session facilitates improved neuromuscular function, increased exercise volume, and less metabolic stress compared with 2-minute rest intervals. Thus, 5-minute rest intervals may be more efficacious for promoting muscle hypertrophy and strength gains in a chronic resistance training program.

2.
J Strength Cond Res ; 38(1): 21-29, 2024 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-38085619

RESUMEN

ABSTRACT: Bontemps, B, Gruet, M, Louis, J, Owens, DJ, Miríc, S, Vercruyssen, F, and Erskine, RM. Patellar tendon adaptations to downhill running training and their relationships with changes in mechanical stress and loading history. J Strength Cond Res 38(1): 21-29, 2024-It is unclear whether human tendon adapts to moderate-intensity, high-volume long-term eccentric exercise, e.g., downhill running (DR) training. This study aimed to investigate the time course of patellar tendon (PT) adaptation to short-term DR training and to determine whether changes in PT properties were related to changes in mechanical stress or loading history. Twelve untrained, young, healthy adults (5 women and 7 men) took part in 4 weeks' DR training, comprising 10 sessions. Running speed was equivalent to 60-65% V̇O2max, and session duration increased gradually (15-30 minutes) throughout training. Isometric knee extensor maximal voluntary torque (MVT), vastus lateralis (VL) muscle physiological cross-sectional area (PCSA) and volume, and PT CSA, stiffness, and Young's modulus were assessed at weeks 0, 2, and 4 using ultrasound and isokinetic dynamometry. Patellar tendon stiffness (+6.4 ± 7.4%), Young's modulus (+6.9 ± 8.8%), isometric MVT (+7.5 ± 12.3%), VL volume (+6.6 ± 3.2%), and PCSA (+3.8 ± 3.3%) increased after 4 weeks' DR (p < 0.05), with no change in PT CSA. Changes in VL PCSA correlated with changes in PT stiffness (r = 0.70; p = 0.02) and Young's modulus (r = 0.63; p = 0.04) from 0 to 4 weeks, whereas changes in MVT did not correlate with changes in PT stiffness and Young's modulus at any time point (p > 0.05). To conclude, 4 weeks' DR training promoted substantial changes in PT stiffness and Young's modulus that are typically observed after high-intensity, low-volume resistance training. These tendon adaptations seemed to be driven primarily by loading history (represented by VL muscle hypertrophy), whereas increased mechanical stress throughout the training period did not seem to contribute to changes in PT stiffness or Young's modulus.


Asunto(s)
Ligamento Rotuliano , Carrera , Masculino , Adulto , Humanos , Femenino , Ligamento Rotuliano/diagnóstico por imagen , Ligamento Rotuliano/fisiología , Estrés Mecánico , Fuerza Muscular/fisiología , Fenómenos Biomecánicos , Módulo de Elasticidad/fisiología , Músculo Esquelético/fisiología
3.
Mol Genet Genomics ; 298(1): 119-129, 2023 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-36326960

RESUMEN

PURPOSE: We used a within-subject, cross-over study to determine the relationship between the intra-individual adaptations to four weeks' resistance (RT) versus four weeks' endurance (END) training, and we investigated whether three single nucleotide polymorphisms (SNPs) were associated with these adaptations. METHODS: Thirty untrained, healthy, young men completed a cycling test to exhaustion to determine peak oxygen uptake (V̇O2peak), and a knee extension (KE) maximum voluntary isometric contraction (MVIC) of the right leg before and after four weeks' supervised RT (four sets of 10 repetitions at 80% single repetition maximum unilateral KE exercise, three times weekly) and four weeks' supervised END (30 min combined continuous/interval cycling, three times weekly), separated by a three-week washout phase. Participants were genotyped for the ACTN3 rs1815739, NOS3 rs2070744 and VEGFA rs2010963 SNPs. RESULTS: The intra-individual adaptations regarding percentage changes in MVIC force and V̇O2peak following RT and END, respectively, were unrelated (r2 = 0.003; P = 0.79). However, a VEGFA genotype × training modality interaction (P = 0.007) demonstrated that VEGFA GG homozygotes increased their MVIC force after RT (+ 20.9 ± 13.2%) more than they increased their V̇O2peak after END (+ 8.4 ± 9.1%, P = 0.005), and more than VEGFA C-allele carriers increased their MVIC force after RT (+ 12.2 ± 8.1%, P = 0.04). There were no genotype × training modality interactions for the ACTN3 or NOS3 SNPs. CONCLUSION: High/low responders to RT were not consequently high/low responders to END or vice versa. However, preferential adaptation of VEGFA rs2010963 GG homozygotes to RT over END, and their greater adaptation to RT compared to VEGFA C-allele carriers, indicate a novel genetic predisposition for superior RT adaptation.


Asunto(s)
Entrenamiento Aeróbico , Entrenamiento de Fuerza , Masculino , Humanos , Estudios Cruzados , Fuerza Muscular/genética , Genotipo , Adaptación Fisiológica/genética , Músculo Esquelético , Factor A de Crecimiento Endotelial Vascular/genética , Actinina/genética
4.
J Nutr ; 2023 Nov 24.
Artículo en Inglés | MEDLINE | ID: mdl-38007183

RESUMEN

BACKGROUND: Resistance exercise (RE) stimulates collagen synthesis in skeletal muscle and tendon but there is limited and equivocal evidence regarding an effect of collagen supplementation and exercise on collagen synthesis. Furthermore, it is not known if a dose-response exists regarding the effect of hydrolyzed collagen (HC) ingestion and RE on collagen synthesis. OBJECTIVE: To determine the HC dose-response effect on collagen synthesis after high-intensity RE in resistance-trained young men. METHODS: Using a double-blind, randomized crossover design, 10 resistance-trained males (age: 26 ± 3 y; height: 1.77 ± 0.04 m; mass: 79.7 ± 7.0 kg) ingested 0 g, 15 g, or 30 g HC with 50 mg vitamin C 1 h before performing 4 sets' barbell back squat RE at 10-repetition maximum load, after which they rested for 6 h. Blood samples were collected throughout each of the 3 interventions to analyze procollagen type Ⅰ N-terminal propeptide (PINP) and ß-isomerized C-terminal telopeptide of type I collagen (ß-CTX) concentration, and the concentration of 18 collagen amino acids. RESULTS: The serum PINP concentration × time area under the curve (AUC) was greater for 30 g (267 ± 79 µg·L-1·h) than for 15 g (235 ± 70 µg·L-1·h, P = 0.013) and 0 g HC (219 ± 88 µg·L-1·h, P = 0.002) but there was no difference between 0 and 15 g HC (P = 0.225). The AUCs of glycine and proline were greater for 30 g than for 15 and 0 g HC (P < 0.05). Plasma ß-CTX concentration decreased from -1 to +6 h (P < 0.05), with no differences between interventions. CONCLUSIONS: Ingesting 30 g HC before high-intensity RE augments whole-body collagen synthesis more than 15 g and 0 g HC in resistance-trained young males.

5.
Clin J Sport Med ; 33(5): e145-e151, 2023 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-35350037

RESUMEN

OBJECTIVE: Concussions are common match injuries in elite rugby, and reports exist of reduced cognitive function and long-term health consequences that can interrupt or end a playing career and produce continued ill health. The aim of this study was to investigate the association between elite rugby status and 8 concussion-associated risk polymorphisms. We hypothesized that concussion-associated risk genotypes and alleles would be underrepresented in elite rugby athletes compared with nonathletes. DESIGN: A case-control genetic association study. SETTING: Institutional (university). PARTICIPANTS: Elite White male rugby athletes [n = 668, mean (SD) height 1.85 (0.07) m, mass 102 (12) kg, and age 29 (7) years] and 1015 nonathlete White men and women (48% men). INTERVENTIONS: Genotype was the independent variable, obtained by PCR of genomic DNA using TaqMan probes. MAIN OUTCOME MEASURE: Elite athlete status with groups compared using χ 2 and odds ratio (OR). RESULTS: The COMT rs4680 Met/Met (AA) genotype, Met allele possession, and Met allele frequency were lower in rugby athletes (24.8%, 74.6%, and 49.7%, respectively) than nonathletes (30.2%, 77.6%, and 54.0%; P < 0.05). The Val/Val (GG) genotype was more common in elite rugby athletes than nonathletes (OR 1.39, 95% confidence interval 1.04-1.86). No other polymorphism was associated with elite athlete status. CONCLUSIONS: Elite rugby athlete status is associated with COMT rs4680 genotype that, acting pleiotropically, could affect stress resilience and behavioral traits during competition, concussion risk, and/or recovery from concussion. Consequently, assessing COMT rs4680 genotype might aid future individualized management of concussion risk among athletes.


Asunto(s)
Conmoción Encefálica , Fútbol Americano , Humanos , Masculino , Femenino , Adulto , Rugby , Fútbol Americano/lesiones , Conmoción Encefálica/genética , Conmoción Encefálica/psicología , Polimorfismo Genético , Atletas , Catecol O-Metiltransferasa/genética
6.
Int J Sports Med ; 44(13): 941-960, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37253386

RESUMEN

The aim of this review was to critically appraise the literature concerning the genetic association with athlete status, physical performance, and injury risk in soccer. The objectives were to provide guidance on which genetic markers could potentially be used as part of future practice in soccer and to provide direction for future research in this area. The most compelling evidence identified six genetic polymorphisms to be associated with soccer athlete status (ACE I/D; ACTN3 rs1815739; AGT rs699; MCT1 rs1049434; NOS3 rs2070744; PPARA rs4253778), six with physical performance (ACTN3 rs1815739; AMPD1 rs17602729; BDNF rs6265; COL2A1 rs2070739; COL5A1 rs12722; NOS3 rs2070744), and seven with injury risk (ACTN3 rs1815739; CCL2 rs2857656; COL1A1 rs1800012; COL5A1 rs12722; EMILIN1 rs2289360; IL6 rs1800795; MMP3 rs679620). As well as replication by independent groups, large-scale genome-wide association studies are required to identify new genetic markers. Future research should also investigate the physiological mechanisms associating these polymorphisms with specific phenotypes. Further, researchers should investigate the above associations in female and non-Caucasian soccer players, as almost all published studies have recruited male participants of European ancestry. Only after robust, independently replicated genetic data have been generated, can genetic testing be considered an additional tool to potentially inform future practice in soccer.


Asunto(s)
Fútbol , Humanos , Masculino , Femenino , Fútbol/fisiología , Estudio de Asociación del Genoma Completo , Marcadores Genéticos , Genotipo , Atletas , Actinina/genética , Rendimiento Físico Funcional
7.
J Sports Sci ; 41(1): 56-62, 2023 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37012221

RESUMEN

Success in long-distance running relies on multiple factors including oxygen utilisation and lactate metabolism, and genetic associations with athlete status suggest elite competitors are heritably predisposed to superior performance. The Gly allele of the PPARGC1A Gly482Ser rs8192678 polymorphism has been associated with endurance athlete status and favourable aerobic training adaptations. However, the association of this polymorphism with performance amongst long-distance runners remains unclear. Accordingly, this study investigated whether rs8192678 was associated with elite status and competitive performance of long-distance runners. Genomic DNA from 656 Caucasian participants including 288 long-distance runners (201 men, 87 women) and 368 non-athletes (285 men, 83 women) was analysed. Medians of the 10 best UK times (Top10) for 10 km, half-marathon and marathon races were calculated, with all included athletes having personal best (PB) performances within 20% of Top10 (this study's definition of "elite"). Genotype and allele frequencies were compared between athletes and non-athletes, and athlete PB compared between genotypes. There were no differences in genotype frequency between athletes and non-athletes, but athlete Ser allele carriers were 2.5% faster than Gly/Gly homozygotes (p = 0.030). This study demonstrates that performance differences between elite long-distance runners are associated with rs8192678 genotype, with the Ser allele appearing to enhance performance.


Asunto(s)
Resistencia Física , Carrera , Masculino , Humanos , Femenino , Resistencia Física/genética , Polimorfismo Genético , Frecuencia de los Genes , Genotipo , Coactivador 1-alfa del Receptor Activado por Proliferadores de Peroxisomas gamma/genética
8.
J Strength Cond Res ; 37(8): 1718-1727, 2023 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-36752769

RESUMEN

ABSTRACT: Hart, AS, Erskine, RM, and Clark, DR. The use of physical characteristics to explain variation in ball-carrying capability in elite rugby union: a narrative review. J Strength Cond Res 37(8): 1718-1727, 2023-The effectiveness of offensive ball carrying has been identified as a key determinant in elite rugby union try-scoring success and subsequent match outcome. Despite this, there is limited research evaluating the physical qualities believed to underpin the ball-carrying capability among elite rugby union players. The aim of this review was to critically appraise the scientific literature that has investigated the use of physical characteristics to explain ball-carrying capability in elite rugby union. Measures of sprint performance, specifically acceleration, maximum sprinting speed, and sprint momentum have presented weak-to-strong correlations with the number of tries scored, line breaks, tackle breaks, defenders beaten, and dominant collisions recorded among international rugby union players. In addition, unilateral and bilateral vertical countermovement jump height, peak power output, and drop jump reactive strength index have each demonstrated meaningful associations with the number of tries scored, line breaks, tackle breaks, and dominant collisions. However, various measures of maximal lower-body strength have presented only trivial correlations with the game statistics associated with ball-carrying capability. These trivial correlations are likely a result of the inconsistent and inaccurate methods used to assess maximal lower-body strength, with methods ranging from a box squat-predicted 1 repetition maximum to a maximal isometric mid-thigh pull. Further investigation is required to assess the contribution of maximal lower-body strength, agility, repeated sprint ability, and aerobic capacity to ball-carrying capability in elite rugby union. Such robust, objective data could be used to inform the specificity of physical preparation and maximize the transfer of these physical qualities to on-field performance.


Asunto(s)
Rendimiento Atlético , Fútbol Americano , Carrera , Humanos , Fuerza Muscular , Rugby
9.
J Strength Cond Res ; 37(6): 1250-1258, 2023 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-36662035

RESUMEN

ABSTRACT: McQuilliam, SJ, Clark, DR, Erskine, RM, and Brownlee, TE. The effect of high vs. moderate-intensity resistance training on strength, power and muscle soreness in male academy soccer players. J Strength Cond Res 37(6): 1250-1258, 2023-The aims of this study were to investigate the impact of high-intensity, low-volume (HRT) vs . moderate-intensity, and high-volume resistance training (MRT) vs . soccer training only (control group [CON]) on changes in strength, power, and speed and to compare delayed onset muscle soreness (DOMS) between groups in male academy soccer players (ASP). Twenty-two ASP (age: 18 ± 1 years) were assigned to HRT ( n = 8), MRT ( n = 7), or CON ( n = 7). High-intensity resistance training completed 2 sets of 4 repetitions parallel back squat (PBS) repetitions at 90% 1 repetition maximum (1RM), while MRT performed 3 sets of 8 repetitions PBS repetitions at 80% 1RM, both once a week for 6 weeks in-season, alongside regular soccer training. All groups completed the following pretraining and posttraining assessments: 3RM PBS, bilateral vertical and horizontal countermovement jumps (CMJ), squat jump (SJ), and 30-m sprint. Delayed onset muscle soreness was assessed using a visual analog scale throughout training. High-intensity resistance training and MRT experienced similar increases compared with CON in absolute PBS 3RM ( p < 0.001), SJ height ( p = 0.001), and CMJ height ( p = 0.008) after training. There was a greater increase in PBS 3RM relative to body mass after HRT than MRT and CON ( p = 0.001) and horizontal CMJ distance improved in HRT but not in MRT or CON ( p = 0.011). There was no change in 10-m, 20-m, or 30-m sprint performance in any group. High-intensity resistance training volume was 58 ± 15% lower than that of MRT ( p < 0.001), and DOMS measured throughout training did not differ between groups ( p = 0.487). These findings suggest that 1 HRT session a week may be an efficient method for improving strength and power in ASP in-season with minimal DOMS.


Asunto(s)
Rendimiento Atlético , Entrenamiento de Fuerza , Carrera , Fútbol , Humanos , Masculino , Adolescente , Adulto Joven , Adulto , Entrenamiento de Fuerza/métodos , Mialgia , Fútbol/fisiología , Carrera/fisiología , Fuerza Muscular/fisiología , Rendimiento Atlético/fisiología
10.
J Strength Cond Res ; 37(4): 799-805, 2023 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-36763468

RESUMEN

ABSTRACT: Dines, HR, Nixon, J, Lockey, SJ, Herbert, AJ, Kipps, C, Pedlar, CR, Day, SH, Heffernan, SM, Antrobus, MR, Brazier, J, Erskine, RM, Stebbings, GK, Hall, ECR, and Williams, AG. Collagen gene polymorphisms previously associated with resistance to soft-tissue injury are more common in competitive runners than nonathletes. J Strength Cond Res 37(4): 799-805, 2023-Single-nucleotide polymorphisms (SNPs) of collagen genes have been associated with soft-tissue injury and running performance. However, their combined contribution to running performance is unknown. We investigated the association of 2 collagen gene SNPs with athlete status and performance in 1,429 Caucasian subjects, including 597 competitive runners (354 men and 243 women) and 832 nonathletes (490 men and 342 women). Genotyping for COL1A1 rs1800012 (C > A) and COL5A1 rs12722 (C > T) SNPs was performed by a real-time polymerase chain reaction. The numbers of "injury-resistant" alleles from each SNP, based on previous literature (rs1800012 A allele and rs12722 C allele), were combined as an injury-resistance score (RScore, 0-4; higher scores indicate injury resistance). Genotype frequencies, individually and combined as an RScore, were compared between cohorts and investigated for associations with performance using official race times. Runners had 1.34 times greater odds of being rs12722 CC homozygotes than nonathletes (19.7% vs. 15.5%, p = 0.020) with no difference in the rs1800012 genotype distribution ( p = 0.659). Fewer runners had an RScore 0 of (18.5% vs. 24.7%) and more had an RScore of 4 (0.6% vs. 0.3%) than nonathletes ( p < 0.001). Competitive performance was not associated with the COL1A1 genotype ( p = 0.933), COL5A1 genotype ( p = 0.613), or RScore ( p = 0.477). Although not associated directly with running performance among competitive runners, a higher combined frequency of injury-resistant COL1A1 rs1800012 A and COL5A1 rs12722 C alleles in competitive runners than nonathletes suggests these SNPs may be advantageous through a mechanism that supports, but does not directly enhance, running performance.


Asunto(s)
Carrera , Traumatismos de los Tejidos Blandos , Masculino , Humanos , Femenino , Colágeno Tipo V/genética , Genotipo , Colágeno/genética , Polimorfismo de Nucleótido Simple
11.
J Cell Physiol ; 237(7): 2862-2876, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-35312042

RESUMEN

We investigated whether 20 candidate single nucleotide polymorphisms (SNPs) were associated with in vivo exercise-induced muscle damage (EIMD), and with an in vitro skeletal muscle stem cell wound healing assay. Sixty-five young, untrained Caucasian adults performed 120 maximal eccentric knee-extensions on an isokinetic dynamometer to induce EIMD. Maximal voluntary isometric/isokinetic knee-extensor torque, knee joint range of motion (ROM), muscle soreness, serum creatine kinase activity and interleukin-6 concentration were assessed before, directly after and 48 h after EIMD. Muscle stem cells were cultured from vastus lateralis biopsies from a separate cohort (n = 12), and markers of repair were measured in vitro. Participants were genotyped for all 20 SNPs using real-time PCR. Seven SNPs were associated with the response to EIMD, and these were used to calculate a total genotype score, which enabled participants to be segregated into three polygenic groups: 'preferential' (more 'protective' alleles), 'moderate', and 'non-preferential'. The non-preferential group was consistently weaker than the preferential group (1.93 ± 0.81 vs. 2.73 ± 0.59 N ∙ m/kg; P = 9.51 × 10-4 ) and demonstrated more muscle soreness (p = 0.011) and a larger decrease in knee joint ROM (p = 0.006) following EIMD. Two TTN-AS1 SNPs in linkage disequilibrium were associated with in vivo EIMD (rs3731749, p ≤ 0.005) and accelerated muscle stem cell migration into the artificial wound in vitro (rs1001238, p ≤ 0.006). Thus, we have identified a polygenic profile, linked with both muscle weakness and poorer recovery following EIMD. Moreover, we provide evidence for a novel TTN gene-cell-skeletal muscle mechanism that may help explain some of the interindividual variability in the response to EIMD.


Asunto(s)
Ejercicio Físico , Músculo Esquelético/fisiología , Mialgia , Adulto , Ejercicio Físico/fisiología , Humanos , Músculo Esquelético/patología , Mialgia/genética , Mialgia/patología , Polimorfismo de Nucleótido Simple , Músculo Cuádriceps/citología , Músculo Cuádriceps/fisiología , Células Madre/citología , Torque
12.
Scand J Med Sci Sports ; 32(2): 338-350, 2022 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-34633711

RESUMEN

It is currently unknown if injury risk is associated with genetic variation in academy soccer players (ASP). We investigated whether nine candidate single nucleotide polymorphisms were associated (individually and in combination) with injury in ASP at different stages of maturation. Saliva samples and one season's injury records were collected from 402 Caucasian male ASP from England, Spain, Uruguay, and Brazil, whose maturity status was defined as pre- or post-peak height velocity (PHV). Pre-PHV COL5A1 rs12722 CC homozygotes had relatively higher prevalence of any musculoskeletal soft tissue (22.4% vs. 3.0%, p = 0.018) and ligament (18.8% vs. 11.8%, p = 0.029) injury than T-allele carriers, while VEGFA rs2010963 CC homozygotes had greater risk of ligament/tendon injury than G-allele carriers. Post-PHV IL6 rs1800795 CC homozygotes had a relatively higher prevalence of any (67.6% vs. 40.6%, p = 0.003) and muscle (38.2% vs. 19.2%, p = 0.013) injuries than G-allele carriers. Relatively more post-PHV EMILIN1 rs2289360 CC homozygotes suffered any injury than CT and TT genotypes (56.4% vs. 40.3% and 32.8%, p = 0.007), while the "protective" EMILIN1 TT genotype was more frequent in post- than pre-PHV ASP (22.3 vs. 10.0%, p = 0.008). Regardless of maturity status, T-alleles of ACTN3 rs1815739 and EMILIN1 rs2289360 were associated with greater absence following ankle injury, while the MMP3 rs679620 T-allele and MYLK rs28497577 GT genotype were associated with greater absence following knee injury. The combination of injury-associated genotypes was greater in injured vs. non-injured ASP. This study is the first to demonstrate that a genetic association exists with injury prevalence in ASP, which differs according to maturity status.


Asunto(s)
Traumatismos de la Rodilla , Fútbol , Actinina/genética , Alelos , Estatura , Humanos , Masculino , Polimorfismo de Nucleótido Simple
13.
Eur J Appl Physiol ; 122(4): 1071-1084, 2022 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-35182181

RESUMEN

PURPOSE: Due to its eccentric nature, downhill running (DR) training has been suggested to promote strength gains through neuromuscular adaptations. However, it is unknown whether short-term chronic DR can elicit such adaptations. METHODS: Twelve untrained, young, healthy adults (5 women, 7 men) took part in 4 weeks' DR, comprising 10 sessions, with running speed equivalent to 60-65% maximal oxygen uptake ([Formula: see text]O2max, assessed at weeks 0 and 4). Isometric and isokinetic knee-extensor maximal voluntary torque (MVT), vastus lateralis (VL) muscle morphology/architecture (anatomical cross-sectional area, ACSA; physiological CSA, PCSA; volume; fascicle length, Lf; pennation angle, PA) and neuromuscular activation (VL EMG) were assessed at weeks 0, 2 and 4. RESULTS: MVT increased by 9.7-15.2% after 4 weeks (p < 0.01). VL EMG during isometric MVT increased by 35.6 ± 46.1% after 4 weeks (p < 0.05) and correlated with changes in isometric MVT after 2 weeks (r = 0.86, p = 0.001). VL ACSA (+2.9 ± 2.7% and +7.1 ± 3.5%) and volume (+2.5 ± 2.5% and +6.6 ± 3.2%) increased after 2 and 4 weeks, respectively (p < 0.05). PCSA (+3.8 ± 3.3%), PA (+5.8 ± 3.8%) and Lf (+2.7 ± 2.2%) increased after 4 weeks (p < 0.01). Changes in VL volume (r = 0.67, p = 0.03) and PCSA (r = 0.71, p = 0.01) correlated with changes in concentric MVT from 2 to 4 weeks. [Formula: see text]O2max (49.4 ± 6.2 vs. 49.7 ± 6.3 mL·kg-1·min-1) did not change after 4 weeks (p = 0.73). CONCLUSION: Just 4 weeks' moderate-intensity DR promoted neuromuscular adaptations in young, healthy adults, typically observed after high-intensity eccentric resistance training. Neural adaptations appeared to contribute to most of the strength gains at 2 and 4 weeks, while muscle hypertrophy seemed to contribute to MVT changes from 2 to 4 weeks only.


Asunto(s)
Entrenamiento de Fuerza , Carrera , Adaptación Fisiológica/fisiología , Adulto , Electromiografía , Femenino , Humanos , Masculino , Fuerza Muscular/fisiología , Músculo Esquelético/fisiología , Músculo Cuádriceps/fisiología , Torque
14.
Scand J Med Sci Sports ; 31(8): 1683-1692, 2021 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-33899971

RESUMEN

We used a within-subject, cross-over design study to compare the impact of 4-weeks' resistance (RT) versus endurance (END) training on vascular function. We subsequently explored the association of intra-individual effects of RT versus END on vascular function with a single nucleotide polymorphism (SNP) of the NOS3 gene. Thirty-five healthy males (21 ± 2 years old) were genotyped for the NOS3 rs2070744 SNP and completed both training modalities. Participants completed 12 sessions over a 4-week period, either RT (leg-extension) or END (cycling) training in a randomized, balanced cross-over design with a 3-week washout period. Participants performed peak oxygen uptake (peak VO2 ) and leg-extension single-repetition maximum (1-RM) testing, and vascular function assessment using flow-mediated dilation (FMD) on 3 separated days pre/post-training. Peak VO2 increased after END (p < 0.001), while 1-RM increased after RT (p < 0.001). FMD improved after 4-weeks' training (time effect: p = 0.006), with no difference between exercise modalities (interaction effect: p = 0.92). No relation was found between individual changes (delta, pre-post) in FMD to both types of training (R2  = 0.06, p = 0.14). Intra-individual changes in FMD following END and RT were associated with the NOS3 SNP, with TT homozygotes significantly favoring only END (p = 0.016) and TC/CC tending to favor RT only (p = 0.056). Although both training modes improved vascular function, significant intra-individual variation in the adaptation of FMD was found. The association with NOS3 genotype suggests a genetic predisposition to FMD adapting to a specific mode of chronic exercise. This study therefore provides novel evidence for personalized exercise training to optimize vascular health.


Asunto(s)
Adaptación Fisiológica/genética , Arteria Braquial/fisiología , Entrenamiento Aeróbico/métodos , Óxido Nítrico Sintasa de Tipo III/genética , Entrenamiento de Fuerza/métodos , Vasodilatación/genética , Vasodilatación/fisiología , Estudios Cruzados , Prueba de Esfuerzo , Genotipo , Humanos , Masculino , Adulto Joven
15.
Int J Sport Nutr Exerc Metab ; 30(4): 280-286, 2020 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-32470922

RESUMEN

The authors aimed to quantify (a) the periodization of physical loading and daily carbohydrate (CHO) intake across an in-season weekly microcycle of Australian Football and (b) the quantity and source of CHO consumed during game play and training. Physical loading (via global positioning system technology) and daily CHO intake (via a combination of 24-hr recall, food diaries, and remote food photographic method) were assessed in 42 professional male players during two weekly microcycles comprising a home and away fixture. The players also reported the source and quantity of CHO consumed during all games (n = 22 games) and on the training session completed 4 days before each game (n = 22 sessions). The total distance was greater (p < .05) on game day (GD; 13 km) versus all training days. The total distance differed between training days, where GD-2 (8 km) was higher than GD-1, GD-3, and GD-4 (3.5, 0, and 7 km, respectively). The daily CHO intake was also different between training days, with reported intakes of 1.8, 1.4, 2.5, and 4.5 g/kg body mass on GD-4, GD-3, GD-2, and GD-1, respectively. The CHO intake was greater (p < .05) during games (59 ± 19 g) compared with training (1 ± 1 g), where in the former, 75% of the CHO consumed was from fluids as opposed to gels. Although the data suggest that Australian Football players practice elements of CHO periodization, the low absolute CHO intakes likely represent considerable underreporting in this population. Even when accounting for potential underreporting, the data also suggest Australian Football players underconsume CHO in relation to the physical demands of training and competition.


Asunto(s)
Carbohidratos de la Dieta , Conducta Alimentaria , Fenómenos Fisiológicos en la Nutrición Deportiva , Deportes , Carga de Trabajo , Adulto , Humanos , Masculino , Adulto Joven , Atletas , Australia , Carbohidratos de la Dieta/administración & dosificación , Sistemas de Información Geográfica , Periodicidad , Carrera
16.
J Strength Cond Res ; 34(6): 1790-1801, 2020 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-30138238

RESUMEN

Brazier, J, Antrobus, M, Stebbings, GK, Day, SH, Callus, P, Erskine, RM, Bennett, MA, Kilduff, LP, and Williams, AG. Anthropometric and physiological characteristics of elite male rugby athletes. J Strength Cond Res 34(6): 1790-1801, 2020-This is the first article to review the anthropometric and physiological characteristics required for elite rugby performance within both rugby union (RU) and rugby league (RL). Anthropometric characteristics such as height and body mass, and physiological characteristics such as speed and muscular strength, have previously been advocated as key discriminators of playing level within rugby. This review aimed to identify the key anthropometric and physiological properties required for elite performance in rugby, distinguishing between RU and RL, forwards and backs and competitive levels. There are differences between competitive standards such that, at the elite level, athletes are heaviest (RU forwards ∼111 kg, backs ∼93 kg; RL forwards ∼103 kg, backs ∼90 kg) with lowest % body fat (RU forwards ∼15%, backs ∼12%; RL forwards ∼14%, backs ∼11%), they have most fat-free mass and are strongest (back squat: RU forwards ∼176 kg, backs ∼157 kg; RL forwards ∼188 kg, backs ∼168 kg; bench press: RU forwards ∼131 kg, backs ∼118 kg; RL forwards ∼122 kg, backs ∼113 kg) and fastest (10 m: RU forwards ∼1.87 seconds, backs ∼1.77 seconds; 10 m: RL forwards ∼1.9 seconds, backs ∼1.83 seconds). We also have unpublished data that indicate contemporary RU athletes have less body fat and are stronger and faster than the published data suggest. Regardless, well-developed speed, agility, lower-body power, and strength characteristics are vital for elite performance, probably reflect both environmental (training, diet, etc.) and genetic factors, distinguish between competitive levels, and are therefore important determinants of elite status in rugby.


Asunto(s)
Pesos y Medidas Corporales , Fútbol Americano/fisiología , Aptitud Física/fisiología , Atletas , Rendimiento Atlético/fisiología , Humanos , Masculino , Fuerza Muscular/fisiología , Músculo Esquelético/fisiología
17.
Eur J Appl Physiol ; 119(1): 29-47, 2019 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-30377780

RESUMEN

Low bone mineral density (BMD) is established as a primary predictor of osteoporotic risk and can also have substantial implications for athlete health and injury risk in the elite sporting environment. BMD is a highly multi-factorial phenotype influenced by diet, hormonal characteristics and physical activity. The interrelationships between such factors, and a strong genetic component, suggested to be around 50-85% at various anatomical sites, determine skeletal health throughout life. Genome-wide association studies and case-control designs have revealed many loci associated with variation in BMD. However, a number of the candidate genes identified at these loci have no known associated biological function or have yet to be replicated in subsequent investigations. Furthermore, few investigations have considered gene-environment interactions-in particular, whether specific genes may be sensitive to mechanical loading from physical activity and the outcome of such an interaction for BMD and potential injury risk. Therefore, this review considers the importance of physical activity on BMD, genetic associations with BMD and how subsequent investigation requires consideration of the interaction between these determinants. Future research using well-defined independent cohorts such as elite athletes, who experience much greater mechanical stress than most, to study such phenotypes, can provide a greater understanding of these factors as well as the biological underpinnings of such a physiologically "extreme" population. Subsequently, modification of training, exercise or rehabilitation programmes based on genetic characteristics could have substantial implications in both the sporting and public health domains once the fundamental research has been conducted successfully.


Asunto(s)
Traumatismos en Atletas/genética , Densidad Ósea , Ejercicio Físico , Predisposición Genética a la Enfermedad , Atletas , Traumatismos en Atletas/epidemiología , Humanos
18.
J Strength Cond Res ; 33(10): 2602-2607, 2019 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-31361736

RESUMEN

Grishina, EE, Zmijewski, P, Semenova, EA, Cieszczyk, P, Huminska-Lisowska, K, Michalowska-Sawczyn, M, Maculewicz, E, Crewther, B, Orysiak, J, Kostryukova, ES, Kulemin, NA, Borisov, OV, Khabibova, SA, Larin, AK, Pavlenko, AV, Lyubaeva, EV, Popov, DV, Lysenko, EA, Vepkhvadze, TF, Lednev, EM, Bondareva, EA, Erskine, RM, Generozov, EV, and Ahmetov, II. Three DNA polymorphisms previously identified as markers for handgrip strength are associated with strength in weightlifters and muscle fiber hypertrophy. J Strength Cond Res 33(10): 2602-2607, 2019-Muscle strength is a highly heritable trait. So far, 196 single nucleotide polymorphisms (SNPs) associated with handgrip strength have been identified in 3 genome-wide association studies. The aim of our study was to validate the association of 35 SNPs with strength of elite Russian weightlifters and replicate the study in Polish weightlifters. Genotyping was performed using micro-array analysis or real-time polymerase chain reaction. We found that the rs12055409 G-allele near the MLN gene (p = 0.004), the rs4626333 G-allele near the ZNF608 gene (p = 0.0338), and the rs2273555 A-allele in the GBF1 gene (p = 0.0099) were associated with greater competition results (total lifts in snatch and clean and jerk adjusted for sex and weight) in 53 elite Russian weightlifters. In the replication study of 76 sub-elite Polish weightlifters, rs4626333 GG homozygotes demonstrated greater competition results (p = 0.0155) and relative muscle mass (p = 0.046), adjusted for sex, weight, and age, compared with carriers of the A-allele. In the following studies, we tested the hypotheses that these SNPs would be associated with skeletal muscle hypertrophy and handgrip strength. We found that the number of strength-associated alleles was positively associated with fast-twitch muscle fiber cross-sectional area in the independent cohort of 20 male power athletes (p = 0.021) and with handgrip strength in 87 physically active individuals (p = 0.015). In conclusion, by replicating previous findings in 4 independent studies, we demonstrate that the rs12055409 G-, rs4626333 G-, and rs2273555 A-alleles are associated with higher levels of strength, muscle mass, and muscle fiber size.


Asunto(s)
Rendimiento Atlético/fisiología , Fuerza de la Mano/fisiología , Fibras Musculares de Contracción Rápida/citología , Fuerza Muscular/genética , Levantamiento de Peso/fisiología , Adolescente , Adulto , Alelos , ADN/análisis , Femenino , Estudio de Asociación del Genoma Completo , Factores de Intercambio de Guanina Nucleótido/genética , Homocigoto , Humanos , Hipertrofia/genética , Masculino , Proteínas Musculares/genética , Fuerza Muscular/fisiología , Polonia , Polimorfismo de Nucleótido Simple , Federación de Rusia , Factores de Transcripción/genética , Adulto Joven
19.
BMC Genomics ; 19(1): 13, 2018 01 03.
Artículo en Inglés | MEDLINE | ID: mdl-29298672

RESUMEN

BACKGROUND: Studies investigating associations between ACTN3 R577X and ACE I/D genotypes and endurance athletic status have been limited by small sample sizes from mixed sport disciplines and lack quantitative measures of performance. AIM: To examine the association between ACTN3 R577X and ACE I/D genotypes and best personal running times in a large homogeneous cohort of endurance runners. METHODS: We collected a total of 1064 personal best 1500, 3000, 5000 m and marathon running times of 698 male and female Caucasian endurance athletes from six countries (Australia, Greece, Italy, Poland, Russia and UK). Athletes were genotyped for ACTN3 R577X and ACE ID variants. RESULTS: There was no association between ACTN3 R577X or ACE I/D genotype and running performance at any distance in men or women. Mean (SD) marathon times (in s) were for men: ACTN3 RR 9149 (593), RX 9221 (582), XX 9129 (582) p = 0.94; ACE DD 9182 (665), ID 9214 (549), II 9155 (492) p = 0.85; for women: ACTN3 RR 10796 (818), RX 10667 (695), XX 10675 (553) p = 0.36; ACE DD 10604 (561), ID 10766 (740), II 10771 (708) p = 0.21. Furthermore, there were no associations between these variants and running time for any distance in a sub-analysis of athletes with personal records within 20% of world records. CONCLUSIONS: Thus, consistent with most case-control studies, this multi-cohort quantitative analysis demonstrates it is unlikely that ACTN3 XX genotype provides an advantage in competitive endurance running performance. For ACE II genotype, some prior studies show an association but others do not. Our data indicate it is also unlikely that ACE II genotype provides an advantage in endurance running.


Asunto(s)
Actinina/genética , Atletas , Peptidil-Dipeptidasa A/genética , Resistencia Física/genética , Polimorfismo Genético , Carrera/fisiología , Femenino , Genotipo , Humanos , Masculino , Población Blanca/genética
20.
J Nutr ; 148(11): 1776-1785, 2018 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-30247586

RESUMEN

Background: The impact, within a single cohort, of independent modulators of skeletal muscle quality, including age, adiposity and obesity, habitual nutritional intake, and physical activity (PA), is unclear. Objective: We examined the bivariate associations between age, adiposity, habitual nutritional intake, and PA against 11 key intrinsic muscle-tendon unit (MTU) characteristics to identify the strongest predictors. We also compared overall profile differences between MTU categories with the use of z scores shown in radar graphs. Methods: Fifty untrained independently living men (n = 15) and women (n = 35) aged 43-80 y (mean ± SD: 64 ±9 y) were categorized by adiposity [men: normal adiposity (NA) <28%, high adiposity (HA) ≥28%; women: NA <40%, HA ≥40%] and body mass index [BMI (in kg/m2); normal: 18 to <25; overweight: ≥25 to <30; and obese: ≥30]. Group differences were examined by body composition assessed with the use of dual-energy X-ray absorptiometry, habitual nutritional intake through a 3-d food diary, PA (work, leisure, sport) using the Baecke questionnaire, 14 serum cytokine concentrations using multiplex luminometry, and 11 MTU characteristics of the gastrocnemius medialis using a combination of isokinetic dynamometry, electromyography, and ultrasonography. Results: Interestingly, classification by BMI highlighted differences between normal and obese individuals in 6 of 11 MTU characteristics (P < 0.001 to P = 0.043). No significant differences were reported in serum cytokine concentrations between adiposity and BMI classifications. BMI predicted 8 of 11 (r = 0.62-0.31, P < 0.001 to P = 0.032), daily energy intake predicted 7 of 11 (r = 0.45-0.34, P = 0.002-0.036), age predicted 5 of 11 (r = -0.49-0.32, P < 0.001 to P = 0.032), work-based PA predicted 5 of 11 (r = 0.43-0.32, P = 0.003-0.048), and adiposity predicted 4 of 11 (r = 0.51-0.33, P < 0.001 to P = 0.022) MTU characteristics. Mathematical z scores and radar graphs showed how endocrine and dietary profiles, but not PA, differed between the top and bottom ∼20% of muscle unit size and specific force. Conclusions: Given the number of factors associated with MTU, education should be targeted to both adequate food quantity and quality (especially protein intake) and increasing habitual moderate to vigorous PA while decreasing sedentary behavior. Specific endocrine variables are also proposed as key pharmaceutical targets.


Asunto(s)
Proteínas en la Dieta/administración & dosificación , Ingestión de Energía/fisiología , Ejercicio Físico , Conducta Alimentaria , Músculo Esquelético/fisiología , Tendones/fisiología , Adiposidad , Adulto , Anciano , Estudios de Cohortes , Femenino , Preferencias Alimentarias , Humanos , Masculino , Persona de Mediana Edad
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA