Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
Intervalo de año de publicación
1.
Cell ; 185(11): 1960-1973.e11, 2022 05 26.
Artículo en Inglés | MEDLINE | ID: mdl-35551765

RESUMEN

During vertebrate embryogenesis, cell collectives engage in coordinated behavior to form tissue structures of increasing complexity. In the avian skin, assembly into follicles depends on intrinsic mechanical forces of the dermis, but how cell mechanics initiate pattern formation is not known. Here, we reconstitute the initiation of follicle patterning ex vivo using only freshly dissociated avian dermal cells and collagen. We find that contractile cells physically rearrange the extracellular matrix (ECM) and that ECM rearrangement further aligns cells. This exchange transforms a mechanically unlinked collective of dermal cells into a continuum, with coherent, long-range order. Combining theory with experiment, we show that this ordered cell-ECM layer behaves as an active contractile fluid that spontaneously forms regular patterns. Our study illustrates a role for mesenchymal dynamics in generating cell-level ordering and tissue-level patterning through a fluid instability-processes that may be at play across morphological symmetry-breaking contexts.


Asunto(s)
Matriz Extracelular , Folículo Piloso , Animales , Colágeno , Piel , Vertebrados
2.
EMBO J ; 42(17): e113280, 2023 09 04.
Artículo en Inglés | MEDLINE | ID: mdl-37522872

RESUMEN

Embryo implantation into the uterus marks a key transition in mammalian development. In mice, implantation is mediated by the trophoblast and is accompanied by a morphological transition from the blastocyst to the egg cylinder. However, the roles of trophoblast-uterine interactions in embryo morphogenesis during implantation are poorly understood due to inaccessibility in utero and the remaining challenges to recapitulate it ex vivo from the blastocyst. Here, we engineer a uterus-like microenvironment to recapitulate peri-implantation development of the whole mouse embryo ex vivo and reveal essential roles of the physical embryo-uterine interaction. We demonstrate that adhesion between the trophoblast and the uterine matrix is required for in utero-like transition of the blastocyst to the egg cylinder. Modeling the implanting embryo as a wetting droplet links embryo shape dynamics to the underlying changes in trophoblast adhesion and suggests that the adhesion-mediated tension release facilitates egg cylinder formation. Light-sheet live imaging and the experimental control of the engineered uterine geometry and trophoblast velocity uncovers the coordination between trophoblast motility and embryo growth, where the trophoblast delineates space for embryo morphogenesis.


Asunto(s)
Blastocisto , Implantación del Embrión , Femenino , Ratones , Animales , Trofoblastos , Útero , Desarrollo Embrionario , Mamíferos
3.
EMBO Rep ; 24(12): e57739, 2023 Dec 06.
Artículo en Inglés | MEDLINE | ID: mdl-37916772

RESUMEN

Biological pattern formation is essential for generating and maintaining spatial structures from the scale of a single cell to tissues and even collections of organisms. Besides biochemical interactions, there is an important role for mechanical and geometrical features in the generation of patterns. We review the theoretical principles underlying different types of mechanochemical pattern formation across spatial scales and levels of biological organization.


Asunto(s)
Modelos Biológicos , Morfogénesis
4.
Nat Commun ; 14(1): 5644, 2023 09 13.
Artículo en Inglés | MEDLINE | ID: mdl-37704612

RESUMEN

To navigate through diverse tissues, migrating cells must balance persistent self-propelled motion with adaptive behaviors to circumvent obstacles. We identify a curvature-sensing mechanism underlying obstacle evasion in immune-like cells. Specifically, we propose that actin polymerization at the advancing edge of migrating cells is inhibited by the curvature-sensitive BAR domain protein Snx33 in regions with inward plasma membrane curvature. The genetic perturbation of this machinery reduces the cells' capacity to evade obstructions combined with faster and more persistent cell migration in obstacle-free environments. Our results show how cells can read out their surface topography and utilize actin and plasma membrane biophysics to interpret their environment, allowing them to adaptively decide if they should move ahead or turn away. On the basis of our findings, we propose that the natural diversity of BAR domain proteins may allow cells to tune their curvature sensing machinery to match the shape characteristics in their environment.


Asunto(s)
Actinas , Adaptación Psicológica , Membrana Celular , Movimiento Celular , Biofisica
5.
Dev Cell ; 57(3): 373-386.e9, 2022 02 07.
Artículo en Inglés | MEDLINE | ID: mdl-35063082

RESUMEN

Upon implantation, mammalian embryos undergo major morphogenesis and key developmental processes such as body axis specification and gastrulation. However, limited accessibility obscures the study of these crucial processes. Here, we develop an ex vivo Matrigel-collagen-based culture to recapitulate mouse development from E4.5 to E6.0. Our system not only recapitulates embryonic growth, axis initiation, and overall 3D architecture in 49% of the cases, but its compatibility with light-sheet microscopy also enables the study of cellular dynamics through automatic cell segmentation. We find that, upon implantation, release of the increasing tension in the polar trophectoderm is necessary for its constriction and invagination. The resulting extra-embryonic ectoderm plays a key role in growth, morphogenesis, and patterning of the neighboring epiblast, which subsequently gives rise to all embryonic tissues. This 3D ex vivo system thus offers unprecedented access to peri-implantation development for in toto monitoring, measurement, and spatiotemporally controlled perturbation, revealing a mechano-chemical interplay between extra-embryonic and embryonic tissues.


Asunto(s)
Implantación del Embrión , Embrión de Mamíferos/citología , Desarrollo Embrionario , Animales , Tipificación del Cuerpo , Ectodermo/citología , Aprendizaje Automático , Ratones Endogámicos C57BL , Microcirugia , Morfogénesis , Trofoblastos/citología
6.
J Cell Biol ; 218(10): 3272-3289, 2019 10 07.
Artículo en Inglés | MEDLINE | ID: mdl-31420451

RESUMEN

Correct nuclear position is crucial for cellular function and tissue development. Depending on cell context, however, the cytoskeletal elements responsible for nuclear positioning vary. While these cytoskeletal mechanisms have been intensely studied in single cells, how nuclear positioning is linked to tissue morphology is less clear. Here, we compare apical nuclear positioning in zebrafish neuroepithelia. We find that kinetics and actin-dependent mechanisms of nuclear positioning vary in tissues of different morphology. In straight neuroepithelia, nuclear positioning is controlled by Rho-ROCK-dependent myosin contractility. In contrast, in basally constricted neuroepithelia, a novel formin-dependent pushing mechanism is found for which we propose a proof-of-principle force generation theory. Overall, our data suggest that correct nuclear positioning is ensured by the adaptability of the cytoskeleton to cell and tissue shape. This in turn leads to robust epithelial maturation across geometries. The conclusion that different nuclear positioning mechanisms are favored in tissues of different morphology highlights the importance of developmental context for the execution of intracellular processes.


Asunto(s)
Actinas/metabolismo , Movimiento Celular , Núcleo Celular/metabolismo , Células Neuroepiteliales/citología , Células Neuroepiteliales/metabolismo , Animales , Ratas , Pez Cebra
7.
Curr Biol ; 29(21): 3579-3587.e7, 2019 11 04.
Artículo en Inglés | MEDLINE | ID: mdl-31668618

RESUMEN

The development of mechanosensory epithelia, such as those of the auditory and vestibular systems, results in the precise orientation of mechanosensory hair cells. After division of a precursor cell in the zebrafish's lateral line, the daughter hair cells differentiate with opposite mechanical sensitivity. Through a combination of theoretical and experimental approaches, we show that Notch1a-mediated lateral inhibition produces a bistable switch that reliably gives rise to cell pairs of opposite polarity. Using a mathematical model of the process, we predict the outcome of several genetic and chemical alterations to the system, which we then confirm experimentally. We show that Notch1a downregulates the expression of Emx2, a transcription factor known to be involved in polarity specification, and acts in parallel with the planar-cell-polarity system to determine the orientation of hair bundles. By analyzing the effect of simultaneous genetic perturbations to Notch1a and Emx2, we infer that the gene-regulatory network determining cell polarity includes an undiscovered polarity effector.


Asunto(s)
Diferenciación Celular/genética , Polaridad Celular/genética , Proteínas de Homeodominio/genética , Sistema de la Línea Lateral/fisiología , Proteínas del Tejido Nervioso/genética , Receptor Notch1/genética , Proteínas de Pez Cebra/genética , Pez Cebra/fisiología , Animales , Células Ciliadas Auditivas/metabolismo , Proteínas de Homeodominio/metabolismo , Proteínas del Tejido Nervioso/metabolismo , Receptor Notch1/metabolismo , Pez Cebra/genética , Proteínas de Pez Cebra/metabolismo
8.
Elife ; 52016 10 10.
Artículo en Inglés | MEDLINE | ID: mdl-27719759

RESUMEN

Cytokinesis in eukaryotic cells is often accompanied by actomyosin cortical flow. Over 30 years ago, Borisy and White proposed that cortical flow converging upon the cell equator compresses the actomyosin network to mechanically align actin filaments. However, actin filaments also align via search-and-capture, and to what extent compression by flow or active alignment drive furrow formation remains unclear. Here, we quantify the dynamical organization of actin filaments at the onset of ring assembly in the C. elegans zygote, and provide a framework for determining emergent actomyosin material parameters by the use of active nematic gel theory. We characterize flow-alignment coupling, and verify at a quantitative level that compression by flow drives ring formation. Finally, we find that active alignment enhances but is not required for ring formation. Our work characterizes the physical mechanisms of actomyosin ring formation and highlights the role of flow as a central organizer of actomyosin network architecture.


Asunto(s)
Actomiosina/metabolismo , Caenorhabditis elegans/fisiología , Citocinesis , Multimerización de Proteína , Cigoto/fisiología , Animales
9.
Nat Cell Biol ; 17(4): 524-9, 2015 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-25774834

RESUMEN

When cells move using integrin-based focal adhesions, they pull in the direction of motion with large, ∼100 Pa, stresses that contract the substrate. Integrin-mediated adhesions, however, are not required for in vivo confined migration. During focal adhesion-free migration, the transmission of propelling forces, and their magnitude and orientation, are not understood. Here, we combine theory and experiments to investigate the forces involved in adhesion-free migration. Using a non-adherent blebbing cell line as a model, we show that actin cortex flows drive cell movement through nonspecific substrate friction. Strikingly, the forces propelling the cell forward are several orders of magnitude lower than during focal-adhesion-based motility. Moreover, the force distribution in adhesion-free migration is inverted: it acts to expand, rather than contract, the substrate in the direction of motion. This fundamentally different mode of force transmission may have implications for cell-cell and cell-substrate interactions during migration in vivo.


Asunto(s)
Movimiento Celular/fisiología , Fricción/fisiología , Estrés Mecánico , Actinas/metabolismo , Animales , Carcinoma 256 de Walker , Adhesión Celular , Línea Celular Tumoral , Integrinas/metabolismo , Ratas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA