Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
Tipo de estudio
País/Región como asunto
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
Malar J ; 20(1): 77, 2021 Feb 08.
Artículo en Inglés | MEDLINE | ID: mdl-33557825

RESUMEN

BACKGROUND: Insecticide resistance poses a growing challenge to malaria vector control in Kenya and around the world. Following evidence of associations between the mosquito microbiota and insecticide resistance, the microbiota of Anopheles gambiae sensu stricto (s.s.) from Tulukuyi village, Bungoma, Kenya, with differing permethrin resistance profiles were comparatively characterized. METHODS: Using the CDC bottle bioassay, 133 2-3 day-old, virgin, non-blood fed female F1 progeny of field-caught An. gambiae s.s. were exposed to five times (107.5 µg/ml) the discriminating dose of permethrin. Post bioassay, 50 resistant and 50 susceptible mosquitoes were subsequently screened for kdr East and West mutations, and individually processed for microbial analysis using high throughput sequencing targeting the universal bacterial and archaeal 16S rRNA gene. RESULTS: 47 % of the samples tested (n = 133) were resistant, and of the 100 selected for further processing, 99 % were positive for kdr East and 1 % for kdr West. Overall, 84 bacterial taxa were detected across all mosquito samples, with 36 of these shared between resistant and susceptible mosquitoes. A total of 20 bacterial taxa were unique to the resistant mosquitoes and 28 were unique to the susceptible mosquitoes. There were significant differences in bacterial composition between resistant and susceptible individuals (PERMANOVA, pseudo-F = 2.33, P = 0.001), with presence of Sphingobacterium, Lysinibacillus and Streptococcus (all known pyrethroid-degrading taxa), and the radiotolerant Rubrobacter, being significantly associated with resistant mosquitoes. On the other hand, the presence of Myxococcus, was significantly associated with susceptible mosquitoes. CONCLUSIONS: This is the first report of distinct microbiota in An. gambiae s.s. associated with intense pyrethroid resistance. The findings highlight differentially abundant bacterial taxa between resistant and susceptible mosquitoes, and further suggest a microbe-mediated mechanism of insecticide resistance in mosquitoes. These results also indicate fixation of the kdr East mutation in this mosquito population, precluding further analysis of its associations with the mosquito microbiota, but presenting the hypothesis that any microbe-mediated mechanism of insecticide resistance would be likely of a metabolic nature. Overall, this study lays initial groundwork for understanding microbe-mediated mechanisms of insecticide resistance in African mosquito vectors of malaria, and potentially identifying novel microbial markers of insecticide resistance that could supplement existing vector surveillance tools.


Asunto(s)
Anopheles/microbiología , Resistencia a los Insecticidas , Insecticidas/farmacología , Microbiota , Mosquitos Vectores/microbiología , Permetrina/farmacología , Animales , Anopheles/efectos de los fármacos , Femenino , Kenia , Control de Mosquitos , Mosquitos Vectores/efectos de los fármacos
2.
J Med Entomol ; 60(5): 1030-1037, 2023 09 12.
Artículo en Inglés | MEDLINE | ID: mdl-37478413

RESUMEN

The massive and inappropriate use of synthetic insecticides is causing significant and increasing environmental disruption. Therefore, developing effective natural mosquitocidal compounds could be an alternative tool for malarial vector control. The present study investigates the larvicidal and adulticidal effect of methanol and acetone extracts of leaves from Lippia chevalieri, Lippia multiflora, Cymbopogon schoenanthus, and Lantana camara against Anopheles arabiensis, to control the most widespread vector transmitting malaria in sub-Saharan. Africa. Extracts were evaluated following WHO modified test procedure against third- to fourth-instar larvae and, non-blood-fed females from 3- to 5-day-old field populations of An. arabiensis under laboratory conditions using WHO larval and CDC bottle bioassays, respectively. Mortality was recorded after 24-h exposure and several compounds were identified in the extracts. The methanolic and acetonic extracts of L. camara were effective against larvae showing lethal concentrations to 50% (LC50) of the population, at 89.48 and 58.72 ppm, respectively. The acetonic extracts of C. schoenanthus and L. chevalieri showed higher toxicities LC50s of 0.16% and 0.22% against female adults, respectively. The methanolic extracts of L. multiflora and L. chevalieri LC50s were effective at 0.17% and 0.27%, respectively, against female adults. These results indicate that the plant extracts tested may represent effective means to control An. arabiensis when used to treat the surface of the marshes.


Asunto(s)
Anopheles , Culex , Insecticidas , Femenino , Animales , Metanol/farmacología , Acetona/farmacología , Kenia , Mosquitos Vectores , Larva , Hojas de la Planta , Extractos Vegetales/farmacología , Insecticidas/farmacología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA