Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Anal Chem ; 96(26): 10791-10799, 2024 07 02.
Artículo en Inglés | MEDLINE | ID: mdl-38914924

RESUMEN

The analysis and detection of snake venom toxins are a matter of great importance in clinical diagnosis for fast treatment and the discovery of new pharmaceutical products. Current detection methods have high associated costs and require the use of sophisticated bioreceptors, which in some cases are difficult to obtain. Herein, we report the synthesis of template-based molecularly imprinted micromotors for dynamic detection of α-bungarotoxin as a model toxin present in the venom of many-banded krait (Bungarus multicinctus). The specific recognition sites are built-in in the micromotors by incubation of the membrane template with the target toxin, followed by a controlled electrodeposition of a poly(3,4-ethylenedioxythiophene)/poly(sodium 4-styrenesulfonate) polymeric layer, a magnetic Ni layer to promote magnetic guidance and facilitate washing steps, and a Pt layer for autonomous propulsion in the presence of hydrogen peroxide. The enhanced fluid mixing and autonomous propulsion increase the likelihood of interactions with the target analyte as compared with static counterparts, retaining the tetramethylrhodamine-labeled α-bungarotoxin on the micromotor surface with extremely fast dynamic sensor response (after just 20 s navigation) in only 3 µL of water, urine, or serum samples. The sensitivity achieved meets the clinically relevant concentration postsnakebite (from 0.1 to 100 µg/mL), illustrating the feasibility of the approach for practical applications. The selectivity of the protocol is very high, as illustrated by the absence of fluorescence in the micromotor surface in the presence of α-cobratoxin as a representative toxin with a size and structure similar to those of α-bungarotoxin. Recoveries higher than 95% are obtained in the analysis of urine- and serum-fortified samples. The new strategy holds considerable promise for fast, inexpensive, and even onsite detection of several toxins using multiple molecularly imprinted micromotors with tailored recognition abilities.


Asunto(s)
Bungarotoxinas , Bungarotoxinas/química , Bungarotoxinas/orina , Animales , Polímeros/química , Venenos de Serpiente/química , Bungarus , Compuestos Bicíclicos Heterocíclicos con Puentes/química , Impresión Molecular , Ácidos Sulfónicos
2.
Anal Chem ; 96(25): 10127-10133, 2024 Jun 25.
Artículo en Inglés | MEDLINE | ID: mdl-38867513

RESUMEN

3D printing technology is a tremendously powerful technology to fabricate electrochemical sensing devices. However, current conductive filaments are not aimed at electrochemical applications and therefore require intense activation protocols to unleash a suitable electrochemical performance. Current activation methods based on (electro)chemical activation (using strong alkaline solutions and organic solvents and/or electrochemical treatments) or combined approaches are time-consuming and require hazardous chemicals and dedicated operator intervention. Here, pioneering spark-discharge-activated 3D-printed electrodes were developed and characterized, and it was demonstrated that their electrochemical performance was greatly improved by the effective removal of the thermoplastic support polylactic acid (PLA) as well as the formation of sponge-like and low-dimensional carbon nanostructures. This reagent-free approach consists of a direct, fast, and automatized spark discharge between the 3D-electrode and the respective graphite pencil electrode tip using a high-voltage power supply. Activated electrodes were challenged toward the simultaneous voltammetric determination of dopamine (DP) and serotonin (5-HT) in cell culture media. Spark discharge has been demonstrated as a promising approach for conductive filament activation as it is a fast, green (0.94 GREEnness Metric Approach), and automatized procedure that can be integrated into the 3D printing pipeline.

3.
Anal Chem ; 96(14): 5509-5518, 2024 04 09.
Artículo en Inglés | MEDLINE | ID: mdl-38551492

RESUMEN

Micromotor (MM) technology offers a valuable and smart on-the-move biosensing microscale approach in clinical settings where sample availability is scarce in the case of Alzheimer's disease (AD). Soluble amyloid-ß protein oligomers (AßO) (mainly AßO42) that circulate in biological fluids have been recognized as a molecular biomarker and therapeutic target of AD due to their high toxicity, and they are correlated much more strongly with AD compared to the insoluble Aß monomers. A graphene oxide (GO)-gold nanoparticles (AuNPs)/nickel (Ni)/platinum nanoparticles (PtNPs) micromotors (MMGO-AuNPs)-based electrochemical label-free aptassay is proposed for sensitive, accurate, and rapid determination of AßO42 in complex clinical samples such as brain tissue, cerebrospinal fluid (CSF), and plasma from AD patients. An approach that implies the in situ formation of AuNPs on the GO external layer of tubular MM in only one step during MM electrosynthesis was performed (MMGO-AuNPs). The AßO42 specific thiolated-aptamer (AptAßO42) was immobilized in the MMGO-AuNPs via Au-S interaction, allowing for the selective recognition of the AßO42 (MMGO-AuNPs-AptAßO42-AßO42). AuNPs were smartly used not only to covalently bind a specific thiolated-aptamer for the design of a label-free electrochemical aptassay but also to improve the final MM propulsion performance due to their catalytic activity (approximately 2.0× speed). This on-the-move bioplatform provided a fast (5 min), selective, precise (RSD < 8%), and accurate quantification of AßO42 (recoveries 94-102%) with excellent sensitivity (LOD = 0.10 pg mL-1) and wide linear range (0.5-500 pg mL-1) in ultralow volumes of the clinical sample of AD patients (5 µL), without any dilution. Remarkably, our MM-based bioplatform demonstrated the competitiveness for the determination of AßO42 in the target samples against the dot blot analysis, which requires more than 14 h to provide qualitative results only. It is also important to highlight its applicability to the potential analysis of liquid biopsies as plasma and CSF samples, improving the reliability of the diagnosis given the heterogeneity and temporal complexity of neurodegenerative diseases. The excellent results obtained demonstrate the analytical potency of our approach as a future tool for clinical/POCT (Point-of-care testing) routine scenarios.


Asunto(s)
Enfermedad de Alzheimer , Técnicas Biosensibles , Grafito , Nanopartículas del Metal , Humanos , Enfermedad de Alzheimer/diagnóstico , Enfermedad de Alzheimer/metabolismo , Oro/química , Péptidos beta-Amiloides/análisis , Nanopartículas del Metal/química , Reproducibilidad de los Resultados , Límite de Detección , Platino (Metal) , Proteínas Amiloidogénicas , Técnicas Biosensibles/métodos , Técnicas Electroquímicas/métodos
4.
Mikrochim Acta ; 191(2): 106, 2024 01 19.
Artículo en Inglés | MEDLINE | ID: mdl-38240873

RESUMEN

Given the long-life expectancy of the newborn, research aimed at improving sepsis diagnosis and management in this population has been recognized as cost-effective, which at early stages continues to be a tremendous challenge. Despite there is not an ideal-specific biomarker, the simultaneous detection of biomarkers with different behavior during an infection such as procalcitonin (PCT) as high specificity biomarker with one of the earliest biomarkers in sepsis as interleukin-6 (IL-6) increases diagnostic performance. This is not only due to their high positive predictive value but also, since it can also help the clinician to rule out infection and thus avoid the use of antibiotics, due to their high negative predictive value. To this end, we explore a cutting-edge micromotor (MM)-based OFF-ON dual aptassay for simultaneous determination of both biomarkers in 15 min using just 2 µL of sample from low-birth-weight neonates with gestational age less than 32 weeks and birthweight below 1000 g with clinical suspicion of late-onset sepsis. The approach reached the high sensitivities demanded in the clinical scenario (LODPCT = 0.003 ng/mL, LODIL6 = 0.15 pg/mL) with excellent correlation performance (r > 0.9990, p < 0.05) of the MM-based approach with the Hospital method for both biomarkers during the analysis of diagnosed samples and reliability (Er < 6% for PCT, and Er < 4% for IL-6). The proposed approach also encompasses distinctive technical attributes in a clinical scenario since its minimal sample volume requirements and expeditious results compatible with few easy-to-obtain drops of heel stick blood samples from newborns admitted to the neonatal intensive care unit. This would enable the monitoring of both sepsis biomarkers within the initial hours after the manifestation of symptoms in high-risk neonates as a valuable tool in facilitating prompt and well-informed decisions about the initiation of antibiotic therapy.These results revealed the asset behind micromotor technology for multiplexing analysis in diagnosing neonatal sepsis, opening new avenues in low sample volume-based diagnostics.


Asunto(s)
Sepsis Neonatal , Sepsis , Recién Nacido , Humanos , Lactante , Sepsis Neonatal/diagnóstico , Sepsis Neonatal/tratamiento farmacológico , Calcitonina , Proteína C-Reactiva/análisis , Interleucina-6 , Reproducibilidad de los Resultados , Análisis Costo-Beneficio , Sepsis/diagnóstico , Biomarcadores , Polipéptido alfa Relacionado con Calcitonina , Antibacterianos/uso terapéutico
5.
Mikrochim Acta ; 191(6): 361, 2024 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-38822891

RESUMEN

A one-shot CO2 laser-based strategy to generate conductive reduced graphene oxide (rGO) decorated with nanoceria (nCe) is proposed. The 2D/0D rGO-nCe films, integrated as catalytic sensing layers in paper-based sensors, were employed for on-site monitoring of indoor fogging treatments against Listeria monocytogenes (Lm), a ubiquitous pathogenic bacterium. The rGO-nCe laser-assisted synthesis was optimized to preserve the rGO film morphological and electron-transfer features and simultaneously integrate catalytic nCe. The films were characterized by microscopical (SEM), spectroscopical (EDX, Raman, and FTIR), and electrochemical techniques. The most performing film was integrated into a nitrocellulose substrate, and the complete sensor was assembled via a combination of xurography and stencil printing. The rGO-nCe sensor's catalytic activity was proved toward the detection of H2O2, obtaining sensitive determination (LOD = 0.3 µM) and an extended linear range (0.5-1500 µM). Eventually, the rGO-nCe sensor was challenged for the real-time continuous monitoring of hydrogen peroxide aerosol during no-touch fogging treatment conducted following the EU's recommendation for biocidal product use. Treatment effectiveness was proved toward three Lm strains characterized by different origins, i.e., type strain ATCC 7644, clinical strain 338, and food strain 641/6II. The sensor allows for discrimination and quantification treatments at different environmental biocidal amounts and fogging times, and correlates with the microbiological inhibition, promoting the proposed sensor as a useful tool to modulate and monitor no-touch treatments.


Asunto(s)
Desinfección , Grafito , Peróxido de Hidrógeno , Rayos Láser , Listeria monocytogenes , Papel , Grafito/química , Peróxido de Hidrógeno/química , Listeria monocytogenes/efectos de los fármacos , Listeria monocytogenes/aislamiento & purificación , Desinfección/métodos , Cerio/química , Límite de Detección , Técnicas Electroquímicas/métodos , Técnicas Electroquímicas/instrumentación , Catálisis
6.
Lab Chip ; 2024 Aug 09.
Artículo en Inglés | MEDLINE | ID: mdl-39118539

RESUMEN

A novel microfluidic paper-based analytical device with dual colorimetric and electrochemical detection (dual µPAD) was developed for the assessment of transferrin saturation (TSAT) in samples from ischemic stroke patients. TSAT was calculated from the ratio between transferrin-bound iron, which was colorimetrically measured, and the total iron-binding capacity, which was electrochemically measured. To this end, a µPAD was smartly designed, which integrated both colorimetric and electrochemical detection reservoirs, communicating via a microchannel acting as a chemical reactor, and with preloading/storing capabilities (reagent-free device). This approach allowed the dual and simultaneous determination of both parameters, providing an improvement in the reliability of the results due to an independent signal principle and processing. The µPADs were validated by analyzing a certified reference material, showing excellent accuracy (Er ≤ 5%) and precision (RSD ≤ 2%). Then they were applied to the analysis of diagnosed serum samples from ischemic stroke patients. The results were compared to those provided by a free-interference method (urea-PAGE). Impressively, both methods exhibited a good correlation (r = 0.96, p < 0.05) and no significant differences were found between them (slope 1.0 ± 0.1 and the intercept 1 ± 4, p < 0.05), demonstrating the excellent accuracy of our approach during the analysis of complex samples from ischemic stroke patients, using just 90 µL of clinical samples and taking less than 90 min in comparison with the 18 hours required by the urea-PAGE approach. The developed fully integrated colorimetric-electrochemical µPAD is a promising ready to use reagent-free device for the point-of-care testing of TSAT, which can be used to assist physicians in the fast diagnosis and prognosis of ischemic strokes, where the decision-time is crucial for the patient's survival.

7.
Biosens Bioelectron ; 249: 115988, 2024 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-38194814

RESUMEN

Alzheimer's disease (AD), in addition to being the most common cause of dementia, is very difficult to diagnose, with the 42-amino acid form of Aß (Aß-42) being one of the main biomarkers used for this purpose. Despite the enormous efforts made in recent years, the technologies available to determine Aß-42 in human samples require sophisticated instrumentation, present high complexity, are sample and time-consuming, and are costly, highlighting the urgent need not only to develop new tools to overcome these limitations but to provide an early detection and treatment window for AD, which is a top-challenge. In recent years, micromotor (MM) technology has proven to add a new dimension to clinical biosensing, enabling ultrasensitive detections in short times and microscale environments. To this end, here an electrochemical immunoassay based on polypyrrole (PPy)/nickel (Ni)/platinum nanoparticles (PtNPs) MM is proposed in a pioneering manner for the determination of Aß-42 in left prefrontal cortex brain tissue, cerebrospinal fluid, and plasma samples from patients with AD. MM combines the high binding capacity of their immunorecognition external layer with self-propulsion through the catalytic generation of oxygen bubbles in the internal layer due to decomposition of hydrogen peroxide as fuel, allowing rapid bio-detection (15 min) of Aß-42 with excellent selectivity and sensitivity (LOD = 0.06 ng/mL). The application of this disruptive technology to the analysis of just 25 µL of the three types of clinical samples provides values concordant with the clinical values reported, thus confirming the potential of the MM approach to assist in the reliable, simple, fast, and affordable diagnosis of AD by determining Aß-42.


Asunto(s)
Enfermedad de Alzheimer , Técnicas Biosensibles , Nanopartículas del Metal , Humanos , Polímeros , Técnicas Biosensibles/métodos , Platino (Metal) , Pirroles , Péptidos beta-Amiloides , Inmunoensayo/métodos , Biomarcadores/líquido cefalorraquídeo , Fragmentos de Péptidos/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA