Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 29
Filtrar
1.
Nat Rev Neurosci ; 21(11): 644-659, 2020 11.
Artículo en Inglés | MEDLINE | ID: mdl-32943779

RESUMEN

The locus coeruleus (LC), or 'blue spot', is a small nucleus located deep in the brainstem that provides the far-reaching noradrenergic neurotransmitter system of the brain. This phylogenetically conserved nucleus has proved relatively intractable to full characterization, despite more than 60 years of concerted efforts by investigators. Recently, an array of powerful new neuroscience tools have provided unprecedented access to this elusive nucleus, revealing new levels of organization and function. We are currently at the threshold of major discoveries regarding how this tiny brainstem structure exerts such varied and significant influences over brain function and behaviour. All LC neurons receive inputs related to autonomic arousal, but distinct subpopulations of those neurons can encode specific cognitive processes, presumably through more specific inputs from the forebrain areas. This ability, combined with specific patterns of innervation of target areas and heterogeneity in receptor distributions, suggests that activation of the LC has more specific influences on target networks than had initially been imagined.


Asunto(s)
Cognición/fisiología , Locus Coeruleus/fisiología , Neuronas/fisiología , Animales , Humanos , Locus Coeruleus/anatomía & histología , Vías Nerviosas/fisiología , Plasticidad Neuronal , Núcleo Accumbens/fisiología
2.
Eur J Neurosci ; 2024 Sep 30.
Artículo en Inglés | MEDLINE | ID: mdl-39349382

RESUMEN

The acoustic startle reflex (ASR) and prepulse inhibition of the ASR (PPI) assess the efficiency of salience processing, a fundamental brain function that is impaired in many psychiatric conditions. Both ASR and PPI depend on noradrenergic transmission, yet the modulatory role of the locus coeruleus (LC) remains controversial. Clonidine (0.05 mg/kg, i.p.), an alpha2-adrenoreceptor agonist, strongly reduced the ASR amplitude. In contrast, chemogenetic LC inhibition only mildly suppressed the ASR and did affect the PPI in virus-transduced rats. The canine adenovirus type 2 (CAV2)-based vector carrying a gene cassette for the expression of inhibitory receptors (hM4Di) and noradrenergic cell-specific promoter (PRSx8) had high cell-type specificity (94.4 ± 3.1%) but resulted in heterogeneous virus transduction of DbH-positive LC neurons (range: 9.2-94.4%). Clozapine-N-oxide (CNO; 1 mg/kg, i.p.), a hM4Di actuator, caused the firing cessation of hM4Di-expressing LC neurons, yet complete inhibition of the entire population of LC neurons was not achieved. Case-based immunohistochemistry revealed that virus injections distal (> 150 µm) to the LC core resulted in partial LC transduction, while proximal (< 50 µm) injections caused neuronal loss due to virus neurotoxicity. Neither the ASR nor PPI differed between the intact and virus-transduced rats. Our results suggest that a residual activity of virus-non-transduced LC neurons might have been sufficient for mediating an unaltered ASR and PPI. Our study highlights the importance of a case-based assessment of the virus efficiency, specificity, and neurotoxicity for targeted cell populations and of considering these factors when interpreting behavioral effects in experiments employing chemogenetic modulation.

3.
Alzheimers Dement ; 19(5): 2182-2196, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-36642985

RESUMEN

The neuromodulatory subcortical system (NSS) nuclei are critical hubs for survival, hedonic tone, and homeostasis. Tau-associated NSS degeneration occurs early in Alzheimer's disease (AD) pathogenesis, long before the emergence of pathognomonic memory dysfunction and cortical lesions. Accumulating evidence supports the role of NSS dysfunction and degeneration in the behavioral and neuropsychiatric manifestations featured early in AD. Experimental studies even suggest that AD-associated NSS degeneration drives brain neuroinflammatory status and contributes to disease progression, including the exacerbation of cortical lesions. Given the important pathophysiologic and etiologic roles that involve the NSS in early AD stages, there is an urgent need to expand our understanding of the mechanisms underlying NSS vulnerability and more precisely detail the clinical progression of NSS changes in AD. Here, the NSS Professional Interest Area of the International Society to Advance Alzheimer's Research and Treatment highlights knowledge gaps about NSS within AD and provides recommendations for priorities specific to clinical research, biomarker development, modeling, and intervention. HIGHLIGHTS: Neuromodulatory nuclei degenerate in early Alzheimer's disease pathological stages. Alzheimer's pathophysiology is exacerbated by neuromodulatory nuclei degeneration. Neuromodulatory nuclei degeneration drives neuropsychiatric symptoms in dementia. Biomarkers of neuromodulatory integrity would be value-creating for dementia care. Neuromodulatory nuclei present strategic prospects for disease-modifying therapies.


Asunto(s)
Enfermedad de Alzheimer , Humanos , Enfermedad de Alzheimer/patología , Encéfalo/patología , Biomarcadores , Progresión de la Enfermedad
4.
J Neurophysiol ; 125(4): 1191-1201, 2021 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-33566743

RESUMEN

The brainstem noradrenergic locus coeruleus (LC) is reciprocally connected with the prefrontal cortex (PFC). Coupling between LC spiking and the depolarizing phase of slow (1-2 Hz) waves in PFC field potentials during sleep and anesthesia suggests that LC drives cortical state transition. Reciprocal LC-PFC connectivity should also allow interactions in the opposing (top-down) direction, but prior work has only studied prefrontal control over LC activity using electrical or optogenetic stimulation. Here, we describe the physiological characteristics of spontaneously occurring top-down LC-PFC interactions. We recorded LC multiunit activity (MUA) simultaneously with PFC single-unit and local field potential (LFP) activity in urethane-anesthetized rats. We observed cross-regional coupling between the phase of 5-Hz oscillations in LC-MUA and the power of PFC LFP 60-200 Hz high γ (hγ). Transient increases in PFC hγ power preceded peaks in the 5-Hz LC-MUA oscillation. Analysis of cross-regional transfer entropy demonstrated that the PFC hγ transients were predictive of a transient increase in LC-MUA. An ∼29 ms delay between these signals was consistent with the conduction velocity from the PFC to the LC. Finally, we showed that PFC hγ transients are associated with synchronized spiking of a subset (27%) of PFC single units. Our data suggest that PFC hγ transients may indicate the timing of the top-down excitatory input to LC, at least under conditions when LC neuronal population activity fluctuates rhythmically at 5 Hz. Synchronized PFC neuronal spiking that occurs during hγ transients may provide a previously unknown mode of top-down control over the LC.NEW & NOTEWORTHY The prefrontal cortex (PFC) is thought to control activity in the noradrenergic locus coeruleus (LC). Prior anatomical and prefrontal stimulation studies demonstrated the potential for PFC-LC interactions; however, it is unknown what types of PFC activity affect the LC. Here, we show that transient increases in PFC high γ power and associated changes in PFC unit-pair synchrony are a potential sign of top-down control over the LC.


Asunto(s)
Ondas Encefálicas/fisiología , Sincronización de Fase en Electroencefalografía/fisiología , Locus Coeruleus/fisiología , Corteza Prefrontal/fisiología , Animales , Masculino , Ratas , Ratas Sprague-Dawley
5.
J Neurosci ; 39(3): 434-444, 2019 01 16.
Artículo en Inglés | MEDLINE | ID: mdl-30459228

RESUMEN

Forming reliable memories requires coordinated activity within distributed brain networks. At present, neural mechanisms underlying systems-level consolidation of declarative memory beyond the hippocampal-prefrontal interactions remain largely unexplored. The mediodorsal thalamic nucleus (MD) is reciprocally connected with the medial prefrontal cortex (mPFC) and also receives inputs from parahippocampal regions. The MD may thus modulate functional connectivity between the hippocampus and the mPFC at different stages of information processing. Here, we characterized, in freely behaving Sprague Dawley male rats, the MD neural activity around hippocampal ripples, indicators of memory replay and hippocampal-cortical information transfer. Overall, the MD firing rate was transiently (0.76 ± 0.06 s) decreased around ripples, with the MD activity suppression preceding the ripple onset for 0.41 ± 0.04 s (range, 0.01-0.95 s). The degree of MD modulation correlated with ripple amplitude, differed across behavioral states, and also depended on the dynamics of hippocampal-cortical population activity. The MD suppression was the strongest and the most consistent during awake ripples. During non-rapid eye movement sleep, MD firing rate decreased around spindle-uncoupled ripples, but increased around spindle-coupled ripples. Our results suggest a competitive interaction between the thalamocortical and hippocampal-cortical networks supporting "on-line" and "off-line" information processing, respectively. We hypothesize that thalamic activity suppression during spindle-uncoupled ripples is favorable for memory replay, as it reduces interference from sensory relay. In turn, the thalamic input during hippocampal-cortical communication, as indicated by spindle/ripple coupling, may contribute to selectivity and reliability of information transfer. Both predictions need to be tested in future experiments.SIGNIFICANCE STATEMENT Systems mechanisms of declarative memory consolidation beyond the hippocampal-prefrontal interactions remain largely unexplored. The connectivity of the mediodorsal thalamic nucleus (MD) with extrahippocampal regions and with medial prefrontal cortex underlies its role in execution of diverse cognitive functions. However, little is known about the MD involvement in "off-line" consolidation. We found that MD neural activity was transiently suppressed around hippocampal ripples, except for ripples co-occurring with sleep spindles, when the MD activity was elevated. The thalamic activity suppression at times of spindle-uncoupled ripples may be favorable for memory replay, as it reduces interference with sensory relay. In turn, the thalamic input during hippocampal-cortical communication, as indicated by spindle/ripple coupling, may contribute to selectivity and reliability of information transfer.


Asunto(s)
Hipocampo/fisiología , Núcleo Talámico Mediodorsal/fisiología , Animales , Conducta Animal , Estimulación Eléctrica , Electrodos Implantados , Ritmo Gamma , Masculino , Consolidación de la Memoria/efectos de los fármacos , Vías Nerviosas/fisiología , Corteza Prefrontal/fisiología , Ratas , Ratas Sprague-Dawley , Sueño/fisiología , Sueño de Onda Lenta/fisiología
6.
Learn Mem ; 25(3): 129-137, 2018 03.
Artículo en Inglés | MEDLINE | ID: mdl-29449457

RESUMEN

Spatial navigation depends on the hippocampal function, but also requires bidirectional interactions between the hippocampus (HPC) and the prefrontal cortex (PFC). The cross-regional communication is typically regulated by critical nodes of a distributed brain network. The thalamic nucleus reuniens (RE) is reciprocally connected to both HPC and PFC and may coordinate the information flow within the HPC-PFC pathway. Here we examined if RE activity contributes to the spatial memory consolidation. Rats were trained to find reward following a complex trajectory on a crossword-like maze. Immediately after each of the five daily learning sessions the RE was reversibly inactivated by local injection of muscimol. The post-training RE inactivation affected neither the spatial task acquisition nor the memory retention, which was tested after a 20-d "forgetting" period. In contrast, the RE inactivation in well-trained rats prior to the maze exposure impaired the task performance without affecting locomotion or appetitive motivation. Our results support the role of the RE in memory retrieval and/or "online" processing of spatial information, but do not provide evidence for its engagement in "off-line" processing, at least within a time window immediately following learning experience.


Asunto(s)
Consolidación de la Memoria/fisiología , Recuerdo Mental/fisiología , Núcleos Talámicos de la Línea Media/fisiología , Memoria Espacial/fisiología , Animales , Agonistas de Receptores de GABA-A/farmacología , Masculino , Aprendizaje por Laberinto/fisiología , Núcleos Talámicos de la Línea Media/efectos de los fármacos , Motivación/fisiología , Actividad Motora/fisiología , Muscimol/farmacología , Ratas Sprague-Dawley , Recompensa
7.
J Neurophysiol ; 119(3): 904-920, 2018 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-29093170

RESUMEN

The locus coeruleus (LC) noradrenergic (NE) neuromodulatory system is critically involved in regulation of neural excitability via its diffuse ascending projections. Tonic NE release in the forebrain is essential for maintenance of vigilant states and increases the signal-to-noise ratio of cortical sensory responses. The impact of phasic NE release on cortical activity and sensory processing is less explored. We previously reported that LC microstimulation caused a transient desynchronization of population activity in the medial prefrontal cortex (mPFC), similar to noxious somatosensory stimuli. The LC receives nociceptive information from the medulla and therefore may mediate sensory signaling to its forebrain targets. Here we performed extracellular recordings in LC and mPFC while presenting noxious stimuli in urethane-anesthetized rats. A brief train of foot shocks produced a robust phasic response in the LC and a transient change in the mPFC power spectrum, with the strongest modulation in the gamma (30-90 Hz) range. The LC phasic response preceded prefrontal gamma power increase, and cortical modulation was proportional to the LC excitation. We also quantitatively characterized distinct cortical states and showed that sensory responses in both LC and mPFC depend on the ongoing cortical state. Finally, cessation of the LC firing by bilateral local iontophoretic injection of clonidine, an α2-adrenoreceptor agonist, completely eliminated sensory responses in the mPFC without shifting cortex to a less excitable state. Together, our results suggest that the LC phasic response induces gamma power increase in the PFC and is essential for mediating sensory information along an ascending noxious pathway. NEW & NOTEWORTHY Our study shows linear relationships between locus coeruleus phasic excitation and the amplitude of gamma oscillations in the prefrontal cortex. Results suggest that the locus coeruleus phasic response is essential for mediating sensory information along an ascending noxious pathway.


Asunto(s)
Ritmo Gamma , Locus Coeruleus/fisiología , Neuronas/fisiología , Corteza Prefrontal/fisiología , Animales , Electrochoque , Masculino , Nocicepción/fisiología , Ratas Sprague-Dawley
8.
Proc Natl Acad Sci U S A ; 112(41): 12834-9, 2015 Oct 13.
Artículo en Inglés | MEDLINE | ID: mdl-26417078

RESUMEN

Neuronal responses to sensory stimuli are not only driven by feedforward sensory pathways but also depend upon intrinsic factors (collectively known as the network state) that include ongoing spontaneous activity and neuromodulation. To understand how these factors together regulate cortical dynamics, we recorded simultaneously spontaneous and somatosensory-evoked multiunit activity from primary somatosensory cortex and from the locus coeruleus (LC) (the neuromodulatory nucleus releasing norepinephrine) in urethane-anesthetized rats. We found that bursts of ipsilateral-LC firing preceded by few tens of milliseconds increases of cortical excitability, and that the 1- to 10-Hz rhythmicity of LC discharge appeared to increase the power of delta-band (1-4 Hz) cortical synchronization. To investigate quantitatively how LC firing might causally influence spontaneous and stimulus-driven cortical dynamics, we then constructed and fitted to these data a model describing the dynamical interaction of stimulus drive, ongoing synchronized cortical activity, and noradrenergic neuromodulation. The model proposes a coupling between LC and cortex that can amplify delta-range cortical fluctuations, and shows how suitably timed phasic LC bursts can lead to enhanced cortical responses to weaker stimuli and increased temporal precision of cortical stimulus-evoked responses. Thus, the temporal structure of noradrenergic modulation may selectively and dynamically enhance or attenuate cortical responses to stimuli. Finally, using the model prediction of single-trial cortical stimulus-evoked responses to discount single-trial state-dependent variability increased by ∼70% the sensory information extracted from cortical responses. This suggests that downstream circuits may extract information more effectively after estimating the state of the circuit transmitting the sensory message.


Asunto(s)
Potenciales Evocados/fisiología , Locus Coeruleus/fisiología , Modelos Neurológicos , Red Nerviosa/fisiología , Corteza Somatosensorial/fisiología , Animales , Masculino , Ratas , Ratas Sprague-Dawley
9.
Learn Mem ; 23(5): 238-48, 2016 May.
Artículo en Inglés | MEDLINE | ID: mdl-27084931

RESUMEN

Experience-induced replay of neuronal ensembles occurs during hippocampal high-frequency oscillations, or ripples. Post-learning increase in ripple rate is predictive of memory recall, while ripple disruption impairs learning. Ripples may thus present a fundamental component of a neurophysiological mechanism of memory consolidation. In addition to system-level local and cross-regional interactions, a consolidation mechanism involves stabilization of memory representations at the synaptic level. Synaptic plasticity within experience-activated neuronal networks is facilitated by noradrenaline release from the axon terminals of the locus coeruleus (LC). Here, to better understand interactions between the system and synaptic mechanisms underlying "off-line" consolidation, we examined the effects of ripple-associated LC activation on hippocampal and cortical activity and on spatial memory. Rats were trained on a radial maze; after each daily learning session neural activity was monitored for 1 h via implanted electrode arrays. Immediately following "on-line" detection of ripple, a brief train of electrical pulses (0.05 mA) was applied to LC. Low-frequency (20 Hz) stimulation had no effect on spatial learning, while higher-frequency (100 Hz) trains transiently blocked generation of ripple-associated cortical spindles and caused a reference memory deficit. Suppression of synchronous ripple/spindle events appears to interfere with hippocampal-cortical communication, thereby reducing the efficiency of "off-line" memory consolidation.


Asunto(s)
Locus Coeruleus/fisiología , Consolidación de la Memoria/fisiología , Trastornos de la Memoria/etiología , Recuerdo Mental/fisiología , Sueño/fisiología , Animales , Biofisica , Condicionamiento Operante/fisiología , Estimulación Eléctrica , Electroencefalografía , Potenciales Evocados/fisiología , Hipocampo/fisiología , Masculino , Aprendizaje por Laberinto , Ratas , Ratas Sprague-Dawley , Tiempo de Reacción/fisiología , Percepción Espacial/fisiología , Memoria Espacial/fisiología , Estadísticas no Paramétricas
10.
J Neurophysiol ; 111(12): 2570-88, 2014 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-24671530

RESUMEN

The brain stem nucleus locus coeruleus (LC) is thought to modulate cortical excitability by norepinephrine (NE) release in LC forebrain targets. The effects of LC burst discharge, typically evoked by a strong excitatory input, on cortical ongoing activity are poorly understood. To address this question, we combined direct electrical stimulation of LC (LC-DES) with extracellular recording in LC and medial prefrontal cortex (mPFC), an important cortical target of LC. LC-DES consisting of single pulses (0.1-0.5 ms, 0.01-0.05 mA) or pulse trains (20-50 Hz, 50-200 ms) evoked short-latency excitatory and inhibitory LC responses bilaterally as well as a delayed rebound excitation occurring ∼100 ms after stimulation offset. The pulse trains, but not single pulses, reliably elicited mPFC activity change, which was proportional to the stimulation strength. The firing rate of ∼50% of mPFC units was significantly modulated by the strongest LC-DES. Responses of mPFC putative pyramidal neurons included fast (∼100 ms), transient (∼100-200 ms) inhibition (10% of units) or excitation (13%) and delayed (∼500 ms), sustained (∼1 s) excitation (26%). The sustained spiking resembled NE-dependent mPFC activity during the delay period of working memory tasks. Concurrently, the low-frequency (0.1-8 Hz) power of the local field potential (LFP) decreased and high-frequency (>20 Hz) power increased. Overall, the DES-induced LC firing pattern resembled the naturalistic biphasic response of LC-NE neurons to alerting stimuli and was associated with a shift in cortical state that may optimize processing of behaviorally relevant events.


Asunto(s)
Lateralidad Funcional/fisiología , Locus Coeruleus/fisiología , Neuronas/fisiología , Norepinefrina/metabolismo , Corteza Prefrontal/fisiología , Potenciales de Acción/fisiología , Animales , Estimulación Eléctrica/métodos , Masculino , Microelectrodos , Células Piramidales/fisiología , Ratas Sprague-Dawley
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA