Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
Asunto de la revista
Intervalo de año de publicación
1.
Drug Metab Rev ; : 1-20, 2024 May 03.
Artículo en Inglés | MEDLINE | ID: mdl-38700278

RESUMEN

pH-mediated drug-drug interactions (DDI) is a prevalent DDI in drug development, especially for weak base compounds with highly pH-dependent solubility. FDA has released a guidance on the evaluation of pH-mediated DDI assessments using in vitro testing and clinical studies. Currently, there is no common practice of ways of testing across the academia and industry. The development of biopredictive method and physiologically-based biopharmaceutics modeling (PBBM) approaches to assess acid-reducing agent (ARA)-DDI have been proven with accurate prediction and could decrease drug development burden, inform clinical design and potentially waive clinical studies. Formulation strategies and careful clinical design could help mitigate the pH-mediated DDI to avoid more clinical studies and label restrictions, ultimately benefiting the patient. In this review paper, a detailed introduction on biorelevant dissolution testing, preclinical and clinical study requirement and PBPK modeling approaches to assess ARA-DDI are described. An improved decision tree for pH-mediated DDI is proposed. Potential mitigations including clinical or formulation strategies are discussed.

2.
AAPS PharmSciTech ; 22(7): 247, 2021 Oct 12.
Artículo en Inglés | MEDLINE | ID: mdl-34642863

RESUMEN

This paper proposes a feed rate control strategy for a novel volumetric micro-feeder, which can accomplish low-dose feeding of pharmaceutical raw materials with significantly different powder properties. The developed feed-forward control strategy enables a constant feed rate with a minimum deviation from the set-point, even for materials that are typically difficult to accurately feed (e.g., due to high cohesion or low density) using conventional continuous feeders. Density variations observed during the feeding process were characterized via a displacement feed factor profile for each powder. The characterized effective displacement density profile was applied in the micro-feeder system to proactively control the feed rate by manipulating the powder displacement rate (i.e., computing the feed rate from the powder displacement rate). Based on the displacement feed factor profile, the feed rate can be predicted during the feeding process and at any feed rate set-point. Three pharmaceutically relevant materials were used for the micro-feeder evaluation: di-calcium phosphate (large-particle system, high density), croscarmellose sodium (small-particle system, medium density), and barium sulfate (very small-particle <10 µm, high density). A significant improvement in the feeding performance was achieved for all investigated materials. The feed rate deviation from the set-point and its relative standard deviation were minimal compared to operations without the control strategy.


Asunto(s)
Tecnología Farmacéutica , Polvos
3.
AAPS PharmSciTech ; 21(8): 301, 2020 Nov 03.
Artículo en Inglés | MEDLINE | ID: mdl-33141336

RESUMEN

Highly potent active pharmaceutical ingredients (APIs) and low-dose excipients, or excipients with very low density, are notoriously hard to feed with currently available commercial technology. The micro-feeder system presented in this work is capable of feeding low-dose rates of powders with different particle sizes and flow properties. Two different grades of lactose, di-calcium phosphate, croscarmellose sodium, silicon dioxide, a spray-dried intermediate, and an active ingredient were studied to vary material properties to test performance of the system. The current micro-feeder system is a volumetric feeder combined with a weighing balance at the outlet that measures feeder output rates. Feeding results are shown as a so-called "displacement-feed factor" curve for each material. Since the powder mass and volume are known in the micro-feeder system, in this work, we characterized an observed density variation during processing via a "displacement-feed factor" profile for each of the fed powders. This curve can be later used for calibrating the system to ensure an accurate, constant feed rate and in addition predicting feeding performance for that material at any feed rate. There is a relation between powder properties and feeding performance. Powders with finer particles and higher compressibility show densification during their feeding process. However, powders with larger particles and lower compressibility show both "densification" and "powder bed expansion," which is the manifestation of dilation and elastic recovery of particles during the micro-feeding process. Through the application of the displacement-feed factor, it is possible to provide precise feeding accuracy of low-dose materials.


Asunto(s)
Polvos , Tecnología Farmacéutica/métodos , Calibración , Excipientes , Lactosa/química , Tamaño de la Partícula
4.
AAPS PharmSciTech ; 20(7): 262, 2019 Jul 23.
Artículo en Inglés | MEDLINE | ID: mdl-31338701

RESUMEN

Continuous manufacturing (CM) has clear potential for manufacturing solid oral dosages. It provides several advantages that may aid the manufacturing and quality of drug products. However, one of the main challenges of this technology is the relatively large amount of knowledge required and the amounts of material needed to develop the process during the early stages of development. Early process development evaluations of continuous manufacturing equipment often require larger amounts of material compared with batch, which hinder CM prospect for drugs during the early stages of process development. In this work, a small-scale evaluation of the mixing process occurring in a continuous mixing system was performed. The evaluation involved the use of a small-scale "mixing cell" which was able to replicate the lubrication process of a continuous mixer. It is worth mentioning that we designed the mixing cell by reconfiguration of an existing continuous tubular blender. The extent of lubrication evaluation was performed for three example formulations and was done by mimicking the amount of shear provided to a formulation by means of matching the number of paddle-passes that a formulation experiences within a continuous blending process in the batch mixing cell. The evaluation showed that the small-scale mixing cell was able to replicate the extent of lubrication-evaluated by measuring the tensile strength of compacts being made with both the continuous and mixing cell experiments-occurring in the continuous mixer using a fraction of the amount of materials needed to perform the same evaluation in the continuous blending process.


Asunto(s)
Lubrificación , Resistencia al Corte , Comprimidos
5.
Int J Pharm ; 543(1-2): 274-287, 2018 May 30.
Artículo en Inglés | MEDLINE | ID: mdl-29567195

RESUMEN

As the pharmaceutical industry modernizes its manufacturing practices and incorporates more efficient processing approaches, it is important to reevaluate which process design elements affect product quality and the means to study these systems. The purpose of this work is to provide insight on a methodology to correlate the effect of raw material properties to equipment and process performance using both data-driven and semi-empirical models. In this work, lubricated blends of pharmaceutically-relevant materials were made using varying levels of magnesium stearate, ranging from 0.25 to 1.5%. Materials characterization (e.g., compressibility, permeability, density, particle size) was performed for all materials and blends. The blends were compressed using a two by three experimental design, varying tablet fill cam depth and tablet thickness, respectively. Tablet properties (e.g., weight, tensile strength, and thickness) were collected for all tablets. Using the collected tablet property results, models coefficients for the semi-empirical Kuentz and Leuenberger equation, which relates the tablet tensile strength to changes in porosity, were regressed. Empirical models were then developed to correlate the values of the Kuentz and Leuenberger equation coefficients to the blend material properties. The empirical models were then used in conjunction with the Kuentz and Leuenberger equation to evaluate the compression design and operational space, accounting for material properties. This proof of concept work aimed at developing correlations between raw material properties and unit operation models can aid process development, especially in design space characterization and robustness analysis.


Asunto(s)
Modelos Teóricos , Comprimidos/química , Acetaminofén/química , Celulosa/química , Química Farmacéutica , Excipientes/química , Lactosa/química , Ácidos Esteáricos/química , Resistencia a la Tracción
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA