Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
1.
Cell ; 187(8): 1936-1954.e24, 2024 Apr 11.
Artículo en Inglés | MEDLINE | ID: mdl-38490196

RESUMEN

Microglia are brain-resident macrophages that shape neural circuit development and are implicated in neurodevelopmental diseases. Multiple microglial transcriptional states have been defined, but their functional significance is unclear. Here, we identify a type I interferon (IFN-I)-responsive microglial state in the developing somatosensory cortex (postnatal day 5) that is actively engulfing whole neurons. This population expands during cortical remodeling induced by partial whisker deprivation. Global or microglial-specific loss of the IFN-I receptor resulted in microglia with phagolysosomal dysfunction and an accumulation of neurons with nuclear DNA damage. IFN-I gain of function increased neuronal engulfment by microglia in both mouse and zebrafish and restricted the accumulation of DNA-damaged neurons. Finally, IFN-I deficiency resulted in excess cortical excitatory neurons and tactile hypersensitivity. These data define a role for neuron-engulfing microglia during a critical window of brain development and reveal homeostatic functions of a canonical antiviral signaling pathway in the brain.


Asunto(s)
Encéfalo , Interferón Tipo I , Microglía , Animales , Ratones , Interferón Tipo I/metabolismo , Microglía/metabolismo , Neuronas/metabolismo , Pez Cebra , Encéfalo/citología , Encéfalo/crecimiento & desarrollo
2.
Trends Immunol ; 45(5): 358-370, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38658221

RESUMEN

Microglia are brain-resident macrophages that play key roles in brain development and experience dependent plasticity. In this review we discuss recent findings regarding the molecular mechanisms through which mammalian microglia sense the unique molecular patterns of the homeostatic brain. We propose that microglial function is acutely controlled in response to 'brain-associated molecular patterns' (BAMPs) that function as indicators of neuronal activity and neural circuit remodeling. A further layer of regulation comes from instructive cytokine cues that define unique microglial functional states. A systematic investigation of the receptors and signaling pathways that mediate these two regulatory axes may begin to define a functional code for microglia-neuron interactions.


Asunto(s)
Encéfalo , Microglía , Transducción de Señal , Microglía/inmunología , Microglía/metabolismo , Humanos , Animales , Encéfalo/fisiología , Citocinas/metabolismo , Neuronas/metabolismo , Neuronas/fisiología , Plasticidad Neuronal , Homeostasis
4.
Trends Genet ; 33(5): 303-321, 2017 05.
Artículo en Inglés | MEDLINE | ID: mdl-28365140

RESUMEN

Advances in public health in the past century have seen a sharp increase in human life expectancy. With these changes have come an increased prevalence of age-related pathologies and health burdens in the elderly. Patient age is the biggest risk factor for multiple chronic conditions that often occur simultaneously within a single individual. An alternative to disease-centric therapeutic approaches is that of 'geroscience', which aims to define molecular mechanisms that link age to overall disease risk. One such mechanism is deregulation of CREB-regulated transcriptional coactivators (CRTCs). Initially identified for their role in modulating CREB transcription, the past 5 years has seen an expansion in knowledge of new cellular regulators and roles of CRTCs beyond CREB. CRTCs have been shown to modulate organismal aging in Caenorhabditis elegans and to impact on age-related diseases in humans. We discuss CRTC deregulation as a new driver of aging that integrates the link between age and disease risk.


Asunto(s)
Envejecimiento/genética , Transactivadores/genética , Transcripción Genética , Envejecimiento/patología , Animales , Modelos Animales de Enfermedad , Humanos , Fosforilación , Factores de Riesgo
6.
bioRxiv ; 2023 Mar 17.
Artículo en Inglés | MEDLINE | ID: mdl-36993292

RESUMEN

The innate immune system plays essential roles in brain synaptic development, and immune dysregulation is implicated in neurodevelopmental diseases. Here we show that a subset of innate lymphocytes (group 2 innate lymphoid cells, ILC2s) is required for cortical inhibitory synapse maturation and adult social behavior. ILC2s expanded in the developing meninges and produced a surge of their canonical cytokine Interleukin-13 (IL-13) between postnatal days 5-15. Loss of ILC2s decreased cortical inhibitory synapse numbers in the postnatal period where as ILC2 transplant was sufficient to increase inhibitory synapse numbers. Deletion of the IL-4/IL-13 receptor (Il4ra) from inhibitory neurons phenocopied the reduction inhibitory synapses. Both ILC2 deficient and neuronal Il4ra deficient animals had similar and selective impairments in adult social behavior. These data define a type 2 immune circuit in early life that shapes adult brain function.

7.
bioRxiv ; 2023 Mar 20.
Artículo en Inglés | MEDLINE | ID: mdl-35233577

RESUMEN

Microglia are brain resident phagocytes that can engulf synaptic components and extracellular matrix as well as whole neurons. However, whether there are unique molecular mechanisms that regulate these distinct phagocytic states is unknown. Here we define a molecularly distinct microglial subset whose function is to engulf neurons in the developing brain. We transcriptomically identified a cluster of Type I interferon (IFN-I) responsive microglia that expanded 20-fold in the postnatal day 5 somatosensory cortex after partial whisker deprivation, a stressor that accelerates neural circuit remodeling. In situ, IFN-I responsive microglia were highly phagocytic and actively engulfed whole neurons. Conditional deletion of IFN-I signaling (Ifnar1fl/fl) in microglia but not neurons resulted in dysmorphic microglia with stalled phagocytosis and an accumulation of neurons with double strand DNA breaks, a marker of cell stress. Conversely, exogenous IFN-I was sufficient to drive neuronal engulfment by microglia and restrict the accumulation of damaged neurons. IFN-I deficient mice had excess excitatory neurons in the developing somatosensory cortex as well as tactile hypersensitivity to whisker stimulation. These data define a molecular mechanism through which microglia engulf neurons during a critical window of brain development. More broadly, they reveal key homeostatic roles of a canonical antiviral signaling pathway in brain development.

8.
Elife ; 82019 08 14.
Artículo en Inglés | MEDLINE | ID: mdl-31411562

RESUMEN

Target of rapamycin complex 1 (TORC1) and AMP-activated protein kinase (AMPK) antagonistically modulate metabolism and aging. However, how they coordinate to determine longevity and if they act via separable mechanisms is unclear. Here, we show that neuronal AMPK is essential for lifespan extension from TORC1 inhibition, and that TORC1 suppression increases lifespan cell non autonomously via distinct mechanisms from global AMPK activation. Lifespan extension by null mutations in genes encoding raga-1 (RagA) or rsks-1 (S6K) is fully suppressed by neuronal-specific rescues. Loss of RAGA-1 increases lifespan via maintaining mitochondrial fusion. Neuronal RAGA-1 abrogation of raga-1 mutant longevity requires UNC-64/syntaxin, and promotes mitochondrial fission cell nonautonomously. Finally, deleting the mitochondrial fission factor DRP-1 renders the animal refractory to the pro-aging effects of neuronal RAGA-1. Our results highlight a new role for neuronal TORC1 in cell nonautonomous regulation of longevity, and suggest TORC1 in the central nervous system might be targeted to promote healthy aging.


Asunto(s)
Caenorhabditis elegans/enzimología , Caenorhabditis elegans/fisiología , Longevidad , Diana Mecanicista del Complejo 1 de la Rapamicina/metabolismo , Dinámicas Mitocondriales , Proteínas Quinasas/metabolismo , Quinasas de la Proteína-Quinasa Activada por el AMP , Animales
9.
Cell Metab ; 26(6): 884-896.e5, 2017 Dec 05.
Artículo en Inglés | MEDLINE | ID: mdl-29107506

RESUMEN

Mitochondrial network remodeling between fused and fragmented states facilitates mitophagy, interaction with other organelles, and metabolic flexibility. Aging is associated with a loss of mitochondrial network homeostasis, but cellular processes causally linking these changes to organismal senescence remain unclear. Here, we show that AMP-activated protein kinase (AMPK) and dietary restriction (DR) promote longevity in C. elegans via maintaining mitochondrial network homeostasis and functional coordination with peroxisomes to increase fatty acid oxidation (FAO). Inhibiting fusion or fission specifically blocks AMPK- and DR-mediated longevity. Strikingly, however, preserving mitochondrial network homeostasis during aging by co-inhibition of fusion and fission is sufficient itself to increase lifespan, while dynamic network remodeling is required for intermittent fasting-mediated longevity. Finally, we show that increasing lifespan via maintaining mitochondrial network homeostasis requires FAO and peroxisomal function. Together, these data demonstrate that mechanisms that promote mitochondrial homeostasis and plasticity can be targeted to promote healthy aging.


Asunto(s)
Proteínas de Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/fisiología , Restricción Calórica , Longevidad , Mitocondrias/metabolismo , Peroxisomas/metabolismo , Proteínas Quinasas/metabolismo , Quinasas de la Proteína-Quinasa Activada por el AMP , Envejecimiento , Animales , Línea Celular , Ácidos Grasos/metabolismo , Metabolómica , Ratones , Mitocondrias/ultraestructura , Dinámicas Mitocondriales , Modelos Animales
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA