Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
Eur J Hum Genet ; 32(1): 52-60, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37880421

RESUMEN

Lissencephaly (LIS) is a malformation of cortical development due to deficient neuronal migration and abnormal formation of cerebral convolutions or gyri. Thirty-one LIS-associated genes have been previously described. Recently, biallelic pathogenic variants in CRADD and PIDD1, have associated with LIS impacting the previously established role of the PIDDosome in activating caspase-2. In this report, we describe biallelic truncating variants in CASP2, another subunit of PIDDosome complex. Seven patients from five independent families presenting with a neurodevelopmental phenotype were identified through GeneMatcher-facilitated international collaborations. Exome sequencing analysis was carried out and revealed two distinct novel homozygous (NM_032982.4:c.1156delT (p.Tyr386ThrfsTer25), and c.1174 C > T (p.Gln392Ter)) and compound heterozygous variants (c.[130 C > T];[876 + 1 G > T] p.[Arg44Ter];[?]) in CASP2 segregating within the families in a manner compatible with an autosomal recessive pattern. RNA studies of the c.876 + 1 G > T variant indicated usage of two cryptic splice donor sites, each introducing a premature stop codon. All patients from whom brain MRIs were available had a typical fronto-temporal LIS and pachygyria, remarkably resembling the CRADD and PIDD1-related neuroimaging findings. Other findings included developmental delay, attention deficit hyperactivity disorder, hypotonia, seizure, poor social skills, and autistic traits. In summary, we present patients with CASP2-related ID, anterior-predominant LIS, and pachygyria similar to previously reported patients with CRADD and PIDD1-related disorders, expanding the genetic spectrum of LIS and lending support that each component of the PIDDosome complex is critical for normal development of the human cerebral cortex and brain function.


Asunto(s)
Lisencefalia , Trastornos del Neurodesarrollo , Humanos , Caspasa 2/genética , Lisencefalia/diagnóstico por imagen , Lisencefalia/genética , Alelos , Trastornos del Neurodesarrollo/genética , Codón sin Sentido , Fenotipo , Cisteína Endopeptidasas/genética
2.
Front Genet ; 15: 1347474, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38560291

RESUMEN

Background: Pediatric patients with undiagnosed conditions, particularly those suspected of having Mendelian genetic disorders, pose a significant challenge in healthcare. This study investigates the diagnostic yield of whole-genome sequencing (WGS) in a pediatric cohort with diverse phenotypes, particularly focusing on the role of clinical expertise in interpreting WGS results. Methods: A retrospective cohort study was conducted at Acibadem University's Maslak Hospital in Istanbul, Turkey, involving pediatric patients (0-18 years) who underwent diagnostic WGS testing. Clinical assessments, family histories, and previous laboratory and imaging studies were analyzed. Variants were classified and interpreted in conjunction with clinical findings. Results: The cohort comprised 172 pediatric patients, aged 0-5 years (62.8%). International patients (28.5%) were from 20 different countries. WGS was used as a first-tier approach in 61.6% of patients. The diagnostic yield of WGS reached 61.0%, enhanced by reclassification of variants of uncertain significance (VUS) through reverse phenotyping by an experienced clinical geneticist. Consanguinity was 18.6% of the overall cohort. Dual diagnoses were carried out for 8.5% of solved patients. Discussion: Our study particularly advocates for the selection of WGS as a first-tier testing approach in infants and children with rare diseases, who were under 5 years of age, thereby potentially shortening the duration of the diagnostic odyssey. The results also emphasize the critical role of a single clinical geneticist's expertise in deep phenotyping and reverse phenotyping, which contributed significantly to the high diagnostic yield.

3.
Front Pediatr ; 12: 1412880, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39026936

RESUMEN

Introduction: Rare and ultra-rare genetic conditions significantly contribute to infant morbidity and mortality, often presenting with atypical features and genetic heterogeneity that complicate management. Rapid genome sequencing (RGS) offers a timely and cost-effective approach to diagnosis, aiding in early clinical management and reducing unnecessary interventions. This pilot study represents the inaugural use of next-generation sequencing (NGS) as a diagnostic instrument for critically ill neonatal and pediatric ICU patients in a Turkish hospital setting. Methods: Ten infants were enrolled based on predefined inclusion criteria, and trio RGS was performed. The mean age of the participants was 124 days, with congenital abnormalities being the most common indication for testing. Three patients had consanguineous parents. The mean turnaround time from enrollment to delivery of results was 169 h, with a diagnostic yield of 50%. Results: Three patients received a definitive molecular diagnosis, impacting their clinical management. Two patients benefited from the exclusion of Mendelian conditions, leading to alternative diagnoses. Discussion: This study demonstrates the feasibility and results of RGS in Turkish hospital settings, emphasizing the importance of timely genetic diagnosis in reducing the diagnostic odyssey for families and improving patient care. Further research is needed to evaluate the cost-effectiveness and applicability of RGS in the Turkish healthcare system for children with diseases of uncertain etiology.

4.
Mol Syndromol ; 14(6): 485-492, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-38058760

RESUMEN

Introduction: Hereditary forms of intellectual disability (ID), an estimated prevalence ranging between 1% and 3% in the general population, are among the most important problems in health care. Especially, autosomal-recessive ID has a very heterogeneous molecular basis and a lack of specific phenotypic features. Methods: Here, we report on two unrelated patients with autosomal-recessive ID, microcephaly, and autistic features and review the patients with TRAPPC9-related ID. Whole-exome sequencing and array CGH were performed for molecular diagnosis of the patients. Results: The first case has a microdeletion on chromosome 8q24.23-q24.3 region which is 1.7 Mb in length and includes the last 5 exons of TRAPPC9, and c.3435delG [p.Thr1146Profs*8] deletion. The second case has a homozygous missense c.623A>C (p.His208Pro) variant in TRAPPC9 which is detected by means of whole-exome sequencing study of the proband. We also reviewed the clinical findings and mutation spectrum of all patients with TRAPPC9-related ID reported so far. Conclusions: Our study showed that the most consistent clinical findings for TRAPPC9-related ID are ID, microcephaly, and some structural brain MRI abnormalities. The mutations in the TRAPPC9 are scattered throughout all exons of TRAPPC9 indicating there is no hot spot mutation region in this gene.

5.
Intractable Rare Dis Res ; 11(4): 219-221, 2022 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-36457583

RESUMEN

Potassium voltage-gated channel subfamily B member 1 (KCNB1) encodes Kv2.1 potassium channel. KCNB1 mutations are known to cause global developmental delay, behavioral disorders, and various epilepsies. Most variants occur de novo and are rarely inherited. Here, we report a 14-year-old male patient who was admitted to our clinic with seizures, developmental delay history, and intellectual disability. Brain magnetic resonance image (MRI) was normal and electroencephalogram (EEG) showed spike and sharp-wave complexes emerging in the left hemisphere parietooccipital areas, which were paroxysmally generalized. We performed whole exome sequence analysis (WES) and identified a heterozygous frameshift mutation c.522delA in exon 1 of KCNB1 (NM_004975.4) predicting a premature stop codon p.Lys174Asnfs*20 in the proband. Sanger sequencing confirmed the heterozygous c.522delA mutation in the proband and his mother who also had epilepsy and learning difficulties. His 45 year old mother had used antiepileptic drugs for 9 years after a seizure episode at 12 years old. Also, his mother's uncle's son is nonverbal and has developmental delay and epilepsy. Our study shows that frameshift mutation cytoplasmic domain of KCNB1 gene can cause intrafamilial phenotypic variability and relatively mild clinical findings in these patients.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA