Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 272
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Cell ; 185(16): 3041-3055.e25, 2022 08 04.
Artículo en Inglés | MEDLINE | ID: mdl-35917817

RESUMEN

Rare copy-number variants (rCNVs) include deletions and duplications that occur infrequently in the global human population and can confer substantial risk for disease. In this study, we aimed to quantify the properties of haploinsufficiency (i.e., deletion intolerance) and triplosensitivity (i.e., duplication intolerance) throughout the human genome. We harmonized and meta-analyzed rCNVs from nearly one million individuals to construct a genome-wide catalog of dosage sensitivity across 54 disorders, which defined 163 dosage sensitive segments associated with at least one disorder. These segments were typically gene dense and often harbored dominant dosage sensitive driver genes, which we were able to prioritize using statistical fine-mapping. Finally, we designed an ensemble machine-learning model to predict probabilities of dosage sensitivity (pHaplo & pTriplo) for all autosomal genes, which identified 2,987 haploinsufficient and 1,559 triplosensitive genes, including 648 that were uniquely triplosensitive. This dosage sensitivity resource will provide broad utility for human disease research and clinical genetics.


Asunto(s)
Variaciones en el Número de Copia de ADN , Genoma Humano , Variaciones en el Número de Copia de ADN/genética , Dosificación de Gen , Haploinsuficiencia/genética , Humanos
2.
Nat Immunol ; 24(9): 1540-1551, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37563310

RESUMEN

Circulating proteins have important functions in inflammation and a broad range of diseases. To identify genetic influences on inflammation-related proteins, we conducted a genome-wide protein quantitative trait locus (pQTL) study of 91 plasma proteins measured using the Olink Target platform in 14,824 participants. We identified 180 pQTLs (59 cis, 121 trans). Integration of pQTL data with eQTL and disease genome-wide association studies provided insight into pathogenesis, implicating lymphotoxin-α in multiple sclerosis. Using Mendelian randomization (MR) to assess causality in disease etiology, we identified both shared and distinct effects of specific proteins across immune-mediated diseases, including directionally discordant effects of CD40 on risk of rheumatoid arthritis versus multiple sclerosis and inflammatory bowel disease. MR implicated CXCL5 in the etiology of ulcerative colitis (UC) and we show elevated gut CXCL5 transcript expression in patients with UC. These results identify targets of existing drugs and provide a powerful resource to facilitate future drug target prioritization.


Asunto(s)
Colitis Ulcerosa , Enfermedades Inflamatorias del Intestino , Esclerosis Múltiple , Humanos , Estudio de Asociación del Genoma Completo , Enfermedades Inflamatorias del Intestino/genética , Sitios de Carácter Cuantitativo , Colitis Ulcerosa/tratamiento farmacológico , Colitis Ulcerosa/genética , Inflamación/genética , Esclerosis Múltiple/genética , Polimorfismo de Nucleótido Simple
3.
Cell ; 182(5): 1198-1213.e14, 2020 09 03.
Artículo en Inglés | MEDLINE | ID: mdl-32888493

RESUMEN

Most loci identified by GWASs have been found in populations of European ancestry (EUR). In trans-ethnic meta-analyses for 15 hematological traits in 746,667 participants, including 184,535 non-EUR individuals, we identified 5,552 trait-variant associations at p < 5 × 10-9, including 71 novel associations not found in EUR populations. We also identified 28 additional novel variants in ancestry-specific, non-EUR meta-analyses, including an IL7 missense variant in South Asians associated with lymphocyte count in vivo and IL-7 secretion levels in vitro. Fine-mapping prioritized variants annotated as functional and generated 95% credible sets that were 30% smaller when using the trans-ethnic as opposed to the EUR-only results. We explored the clinical significance and predictive value of trans-ethnic variants in multiple populations and compared genetic architecture and the effect of natural selection on these blood phenotypes between populations. Altogether, our results for hematological traits highlight the value of a more global representation of populations in genetic studies.


Asunto(s)
Pueblo Asiatico/genética , Mutación Missense/genética , Polimorfismo de Nucleótido Simple/genética , Población Blanca/genética , Genética , Estudio de Asociación del Genoma Completo/métodos , Células HEK293 , Humanos , Interleucina-7/genética , Fenotipo
4.
Cell ; 182(5): 1214-1231.e11, 2020 09 03.
Artículo en Inglés | MEDLINE | ID: mdl-32888494

RESUMEN

Blood cells play essential roles in human health, underpinning physiological processes such as immunity, oxygen transport, and clotting, which when perturbed cause a significant global health burden. Here we integrate data from UK Biobank and a large-scale international collaborative effort, including data for 563,085 European ancestry participants, and discover 5,106 new genetic variants independently associated with 29 blood cell phenotypes covering a range of variation impacting hematopoiesis. We holistically characterize the genetic architecture of hematopoiesis, assess the relevance of the omnigenic model to blood cell phenotypes, delineate relevant hematopoietic cell states influenced by regulatory genetic variants and gene networks, identify novel splice-altering variants mediating the associations, and assess the polygenic prediction potential for blood traits and clinical disorders at the interface of complex and Mendelian genetics. These results show the power of large-scale blood cell trait GWAS to interrogate clinically meaningful variants across a wide allelic spectrum of human variation.


Asunto(s)
Predisposición Genética a la Enfermedad/genética , Herencia Multifactorial/genética , Femenino , Redes Reguladoras de Genes/genética , Estudio de Asociación del Genoma Completo/métodos , Hematopoyesis/genética , Humanos , Masculino , Fenotipo , Polimorfismo de Nucleótido Simple/genética
6.
PLoS Genet ; 18(6): e1010162, 2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-35653391

RESUMEN

Diet is considered as one of the most important modifiable factors influencing human health, but efforts to identify foods or dietary patterns associated with health outcomes often suffer from biases, confounding, and reverse causation. Applying Mendelian randomization in this context may provide evidence to strengthen causality in nutrition research. To this end, we first identified 283 genetic markers associated with dietary intake in 445,779 UK Biobank participants. We then converted these associations into direct genetic effects on food exposures by adjusting them for effects mediated via other traits. The SNPs which did not show evidence of mediation were then used for MR, assessing the association between genetically predicted food choices and other risk factors, health outcomes. We show that using all associated SNPs without omitting those which show evidence of mediation, leads to biases in downstream analyses (genetic correlations, causal inference), similar to those present in observational studies. However, MR analyses using SNPs which have only a direct effect on the exposure on food exposures provided unequivocal evidence of causal associations between specific eating patterns and obesity, blood lipid status, and several other risk factors and health outcomes.


Asunto(s)
Ingestión de Alimentos , Variación Genética , Causalidad , Humanos , Evaluación de Resultado en la Atención de Salud , Factores de Riesgo
7.
Hum Mol Genet ; 31(10): 1545-1559, 2022 05 19.
Artículo en Inglés | MEDLINE | ID: mdl-34791244

RESUMEN

Changes in the N-glycosylation of immunoglobulin G (IgG) are often observed in pathological states, such as autoimmune, inflammatory, neurodegenerative, cardiovascular diseases and some types of cancer. However, in most cases, it is not clear if the disease onset causes these changes, or if the changes in IgG N-glycosylation are among the risk factors for the diseases. The aim of this study was to investigate the casual relationships between IgG N-glycosylation traits and 12 diseases, in which the alterations of IgG N-glycome were previously reported, using two sample Mendelian randomization (MR) approach. We have performed two sample MR using publicly available summary statistics of genome-wide association studies of IgG N-glycosylation and disease risks. Our results indicate positive causal effect of systemic lupus erythematosus (SLE) on the abundance of N-glycans with bisecting N-acetylglucosamine in the total IgG N-glycome. Therefore, we suggest regarding this IgG glycosylation trait as a biomarker of SLE. We also emphasize the need for more powerful GWAS studies of IgG N-glycosylation to further elucidate the causal effect of IgG N-glycome on the diseases.


Asunto(s)
Inmunoglobulina G , Lupus Eritematoso Sistémico , Estudio de Asociación del Genoma Completo , Glicosilación , Humanos , Inmunoglobulina G/genética , Inmunoglobulina G/metabolismo , Lupus Eritematoso Sistémico/genética , Polisacáridos/genética
8.
Gastroenterology ; 164(6): 953-965.e3, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-36736436

RESUMEN

BACKGROUND & AIMS: Acute pancreatitis (AP) is a complex disease and the leading cause of gastrointestinal disease-related hospital admissions. Few therapeutic options exist for AP prevention. Blood proteins with causal evidence may represent promising drug targets, but few have been causally linked with AP. Our objective was to identify blood proteins linked with AP by combining genome-wide association meta-analysis and proteome-wide Mendelian randomization (MR) studies. METHODS: We performed a genome-wide association meta-analysis totalling 10,630 patients with AP and 844,679 controls and a series of inverse-variance weighted MR analyses using cis-acting variants on 4719 blood proteins from the deCODE study (N = 35,559) and 4979 blood proteins from the Fenland study (N = 10,708). RESULTS: The meta-analysis identified genome-wide significant variants (P <5 × 10-8) at 5 loci (ABCG5/8, TWIST2, SPINK1, PRSS2 and MORC4). The proteome-wide MR analyses identified 68 unique blood proteins that may causally be associated with AP, including 29 proteins validated in both data sets. Functional annotation of these proteins confirmed expression of many proteins in metabolic tissues responsible for digestion and energy metabolism, such as the esophagus, adipose tissue, and liver as well as acinar cells of the pancreas. Genetic colocalization and investigations into the druggable genome also identified potential drug targets for AP. CONCLUSIONS: This large genome-wide association study meta-analysis for AP identified new variants linked with AP as well as several blood proteins that may be causally associated with AP. This study provides new information on the genetic architecture of this disease and identified pathways related to AP, which may be further explored as possible therapeutic targets for AP.


Asunto(s)
Pancreatitis , Proteoma , Humanos , Proteoma/genética , Análisis de la Aleatorización Mendeliana , Estudio de Asociación del Genoma Completo , Enfermedad Aguda , Pancreatitis/genética , Proteínas Sanguíneas , Polimorfismo de Nucleótido Simple , Tripsina/genética , Tripsinógeno/genética , Inhibidor de Tripsina Pancreática de Kazal/genética , Proteínas Nucleares/genética
9.
Circulation ; 145(18): 1398-1411, 2022 05 03.
Artículo en Inglés | MEDLINE | ID: mdl-35387486

RESUMEN

BACKGROUND: SARS-CoV-2, the causal agent of COVID-19, enters human cells using the ACE2 (angiotensin-converting enzyme 2) protein as a receptor. ACE2 is thus key to the infection and treatment of the coronavirus. ACE2 is highly expressed in the heart and respiratory and gastrointestinal tracts, playing important regulatory roles in the cardiovascular and other biological systems. However, the genetic basis of the ACE2 protein levels is not well understood. METHODS: We have conducted the largest genome-wide association meta-analysis of plasma ACE2 levels in >28 000 individuals of the SCALLOP Consortium (Systematic and Combined Analysis of Olink Proteins). We summarize the cross-sectional epidemiological correlates of circulating ACE2. Using the summary statistics-based high-definition likelihood method, we estimate relevant genetic correlations with cardiometabolic phenotypes, COVID-19, and other human complex traits and diseases. We perform causal inference of soluble ACE2 on vascular disease outcomes and COVID-19 severity using mendelian randomization. We also perform in silico functional analysis by integrating with other types of omics data. RESULTS: We identified 10 loci, including 8 novel, capturing 30% of the heritability of the protein. We detected that plasma ACE2 was genetically correlated with vascular diseases, severe COVID-19, and a wide range of human complex diseases and medications. An X-chromosome cis-protein quantitative trait loci-based mendelian randomization analysis suggested a causal effect of elevated ACE2 levels on COVID-19 severity (odds ratio, 1.63 [95% CI, 1.10-2.42]; P=0.01), hospitalization (odds ratio, 1.52 [95% CI, 1.05-2.21]; P=0.03), and infection (odds ratio, 1.60 [95% CI, 1.08-2.37]; P=0.02). Tissue- and cell type-specific transcriptomic and epigenomic analysis revealed that the ACE2 regulatory variants were enriched for DNA methylation sites in blood immune cells. CONCLUSIONS: Human plasma ACE2 shares a genetic basis with cardiovascular disease, COVID-19, and other related diseases. The genetic architecture of the ACE2 protein is mapped, providing a useful resource for further biological and clinical studies on this coronavirus receptor.


Asunto(s)
Enzima Convertidora de Angiotensina 2 , COVID-19 , Enzima Convertidora de Angiotensina 2/genética , COVID-19/genética , Estudios Transversales , Estudio de Asociación del Genoma Completo , Humanos , Receptores de Coronavirus , SARS-CoV-2
10.
Hum Mol Genet ; 30(13): 1259-1270, 2021 06 17.
Artículo en Inglés | MEDLINE | ID: mdl-33710309

RESUMEN

The N-glycosylation of immunoglobulin G (IgG) affects its structure and function. It has been demonstrated that IgG N-glycosylation patterns are inherited as complex quantitative traits. Genome-wide association studies identified loci harboring genes encoding enzymes directly involved in protein glycosylation as well as loci likely to be involved in regulation of glycosylation biochemical pathways. Many of these loci could be linked to immune functions and risk of inflammatory and autoimmune diseases. The aim of the present study was to discover and replicate new loci associated with IgG N-glycosylation and to investigate possible pleiotropic effects of these loci onto immune function and the risk of inflammatory and autoimmune diseases. We conducted a multivariate genome-wide association analysis of 23 IgG N-glycosylation traits measured in 8090 individuals of European ancestry. The discovery stage was followed up by replication in 3147 people and in silico functional analysis. Our study increased the total number of replicated loci from 22 to 29. For the discovered loci, we suggest a number of genes potentially involved in the control of IgG N-glycosylation. Among the new loci, two (near RNF168 and TNFRSF13B) were previously implicated in rare immune deficiencies and were associated with levels of circulating immunoglobulins. For one new locus (near AP5B1/OVOL1), we demonstrated a potential pleiotropic effect on the risk of asthma. Our findings underline an important link between IgG N-glycosylation and immune function and provide new clues to understanding their interplay.


Asunto(s)
Sitios Genéticos/genética , Pleiotropía Genética/genética , Estudio de Asociación del Genoma Completo/métodos , Inmunidad/genética , Inmunoglobulina G/genética , Alelos , Enfermedades Autoinmunes/genética , Estudios de Cohortes , Simulación por Computador , Frecuencia de los Genes , Estudio de Asociación del Genoma Completo/estadística & datos numéricos , Genotipo , Glicosilación , Humanos , Inmunoglobulina G/metabolismo , Inflamación/genética , Análisis Multivariante , Fenotipo , Polimorfismo de Nucleótido Simple , Sitios de Carácter Cuantitativo/genética
11.
Am J Hum Genet ; 106(6): 846-858, 2020 06 04.
Artículo en Inglés | MEDLINE | ID: mdl-32470372

RESUMEN

The burden of several common diseases including obesity, diabetes, hypertension, asthma, and depression is increasing in most world populations. However, the mechanisms underlying the numerous epidemiological and genetic correlations among these disorders remain largely unknown. We investigated whether common polymorphic inversions underlie the shared genetic influence of these disorders. We performed an inversion association analysis including 21 inversions and 25 obesity-related traits on a total of 408,898 Europeans and validated the results in 67,299 independent individuals. Seven inversions were associated with multiple diseases while inversions at 8p23.1, 16p11.2, and 11q13.2 were strongly associated with the co-occurrence of obesity with other common diseases. Transcriptome analysis across numerous tissues revealed strong candidate genes for obesity-related traits. Analyses in human pancreatic islets indicated the potential mechanism of inversions in the susceptibility of diabetes by disrupting the cis-regulatory effect of SNPs from their target genes. Our data underscore the role of inversions as major genetic contributors to the joint susceptibility to common complex diseases.


Asunto(s)
Inversión Cromosómica/genética , Diabetes Mellitus/genética , Predisposición Genética a la Enfermedad , Hipertensión/genética , Obesidad/complicaciones , Obesidad/genética , Polimorfismo Genético , Adolescente , Adulto , Anciano , Anciano de 80 o más Años , Alelos , Cromosomas Humanos Par 16/genética , Cromosomas Humanos Par 8/genética , Conjuntos de Datos como Asunto/normas , Diabetes Mellitus/patología , Europa (Continente)/etnología , Femenino , Perfilación de la Expresión Génica , Haplotipos , Humanos , Hipertensión/complicaciones , Islotes Pancreáticos/metabolismo , Islotes Pancreáticos/patología , Masculino , Persona de Mediana Edad , Polimorfismo de Nucleótido Simple/genética , Reproducibilidad de los Resultados , Adulto Joven
12.
Am J Hum Genet ; 107(4): 612-621, 2020 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-32888428

RESUMEN

Hypersensitivity reactions to drugs are often unpredictable and can be life threatening, underscoring a need for understanding their underlying mechanisms and risk factors. The extent to which germline genetic variation influences the risk of commonly reported drug allergies such as penicillin allergy remains largely unknown. We extracted data from the electronic health records of more than 600,000 participants from the UK, Estonian, and Vanderbilt University Medical Center's BioVU biobanks to study the role of genetic variation in the occurrence of self-reported penicillin hypersensitivity reactions. We used imputed SNP to HLA typing data from these cohorts to further fine map the human leukocyte antigen (HLA) association and replicated our results in 23andMe's research cohort involving a total of 1.12 million individuals. Genome-wide meta-analysis of penicillin allergy revealed two loci, including one located in the HLA region on chromosome 6. This signal was further fine-mapped to the HLA-B∗55:01 allele (OR 1.41 95% CI 1.33-1.49, p value 2.04 × 10-31) and confirmed by independent replication in 23andMe's research cohort (OR 1.30 95% CI 1.25-1.34, p value 1.00 × 10-47). The lead SNP was also associated with lower lymphocyte counts and in silico follow-up suggests a potential effect on T-lymphocytes at HLA-B∗55:01. We also observed a significant hit in PTPN22 and the GWAS results correlated with the genetics of rheumatoid arthritis and psoriasis. We present robust evidence for the role of an allele of the major histocompatibility complex (MHC) I gene HLA-B in the occurrence of penicillin allergy.


Asunto(s)
Artritis Reumatoide/genética , Hipersensibilidad a las Drogas/genética , Antígenos HLA-B/genética , Polimorfismo de Nucleótido Simple , Proteína Tirosina Fosfatasa no Receptora Tipo 22/genética , Psoriasis/genética , Adulto , Alelos , Artritis Reumatoide/complicaciones , Artritis Reumatoide/inmunología , Cromosomas Humanos Par 6/química , Hipersensibilidad a las Drogas/complicaciones , Hipersensibilidad a las Drogas/etiología , Hipersensibilidad a las Drogas/inmunología , Registros Electrónicos de Salud , Europa (Continente) , Femenino , Expresión Génica , Sitios Genéticos , Predisposición Genética a la Enfermedad , Genoma Humano , Estudio de Asociación del Genoma Completo , Antígenos HLA-B/inmunología , Prueba de Histocompatibilidad , Humanos , Masculino , Penicilinas/efectos adversos , Proteína Tirosina Fosfatasa no Receptora Tipo 22/inmunología , Psoriasis/complicaciones , Psoriasis/inmunología , Autoinforme , Linfocitos T/inmunología , Linfocitos T/patología , Estados Unidos
13.
J Transl Med ; 21(1): 60, 2023 01 30.
Artículo en Inglés | MEDLINE | ID: mdl-36717893

RESUMEN

Features of the gut microbiota have been associated with several chronic diseases and longevity in preclinical models as well as in observational studies. Whether these relations underlie causal effects in humans remains to be established. We aimed to determine whether the gut microbiota influences cardiometabolic traits as well as the risk of chronic diseases and human longevity using a comprehensive 2-Sample Mendelian randomization approach. We included as exposures 10 gut-associated metabolites and pathways and 57 microbial taxa abundance. We included as outcomes nine cardiometabolic traits (fasting glucose, fasting insulin, systolic blood pressure, diastolic blood pressure, HDL cholesterol, LDL cholesterol, triglycerides, estimated glomerular filtration rate, body mass index [BMI]), eight chronic diseases previously linked with the gut microbiota in observational studies (Alzheimer's disease, depression, type 2 diabetes, non-alcoholic fatty liver disease, coronary artery disease (CAD), stroke, osteoporosis and chronic kidney disease), as well as parental lifespan and longevity. We found 7 associations with evidence of causality before and after sensitivity analyses, but not after multiple testing correction (1198 tests). Most effect sizes (4/7) were small. The two largest exposure-outcome effects were markedly attenuated towards the null upon inclusion of BMI or alcohol intake frequency in multivariable MR analyses. While finding robust genetic instruments for microbiota features is challenging hence potentially inflating type 2 errors, these results do not support a large causal impact of human gut microbita features on cardiometabolic traits, chronic diseases or longevity. These results also suggest that the previously documented associations between gut microbiota and human health outcomes may not always underly causal relations.


Asunto(s)
Enfermedad de la Arteria Coronaria , Diabetes Mellitus Tipo 2 , Microbioma Gastrointestinal , Humanos , Longevidad/genética , Microbioma Gastrointestinal/genética , Análisis de la Aleatorización Mendeliana , Enfermedad de la Arteria Coronaria/genética , Índice de Masa Corporal , Enfermedad Crónica , Polimorfismo de Nucleótido Simple , Estudio de Asociación del Genoma Completo
14.
Nature ; 542(7640): 186-190, 2017 02 09.
Artículo en Inglés | MEDLINE | ID: mdl-28146470

RESUMEN

Height is a highly heritable, classic polygenic trait with approximately 700 common associated variants identified through genome-wide association studies so far. Here, we report 83 height-associated coding variants with lower minor-allele frequencies (in the range of 0.1-4.8%) and effects of up to 2 centimetres per allele (such as those in IHH, STC2, AR and CRISPLD2), greater than ten times the average effect of common variants. In functional follow-up studies, rare height-increasing alleles of STC2 (giving an increase of 1-2 centimetres per allele) compromised proteolytic inhibition of PAPP-A and increased cleavage of IGFBP-4 in vitro, resulting in higher bioavailability of insulin-like growth factors. These 83 height-associated variants overlap genes that are mutated in monogenic growth disorders and highlight new biological candidates (such as ADAMTS3, IL11RA and NOX4) and pathways (such as proteoglycan and glycosaminoglycan synthesis) involved in growth. Our results demonstrate that sufficiently large sample sizes can uncover rare and low-frequency variants of moderate-to-large effect associated with polygenic human phenotypes, and that these variants implicate relevant genes and pathways.


Asunto(s)
Estatura/genética , Frecuencia de los Genes/genética , Variación Genética/genética , Proteínas ADAMTS/genética , Adulto , Alelos , Moléculas de Adhesión Celular/genética , Femenino , Genoma Humano/genética , Glicoproteínas/genética , Glicoproteínas/metabolismo , Glicosaminoglicanos/biosíntesis , Proteínas Hedgehog/genética , Humanos , Péptidos y Proteínas de Señalización Intercelular/genética , Péptidos y Proteínas de Señalización Intercelular/metabolismo , Factores Reguladores del Interferón/genética , Subunidad alfa del Receptor de Interleucina-11/genética , Masculino , Herencia Multifactorial/genética , NADPH Oxidasa 4 , NADPH Oxidasas/genética , Fenotipo , Proteína Plasmática A Asociada al Embarazo/metabolismo , Procolágeno N-Endopeptidasa/genética , Proteoglicanos/biosíntesis , Proteolisis , Receptores Androgénicos/genética , Somatomedinas/metabolismo
15.
Mol Psychiatry ; 26(6): 2056-2069, 2021 06.
Artículo en Inglés | MEDLINE | ID: mdl-32393786

RESUMEN

We conducted genome-wide association studies (GWAS) of relative intake from the macronutrients fat, protein, carbohydrates, and sugar in over 235,000 individuals of European ancestries. We identified 21 unique, approximately independent lead SNPs. Fourteen lead SNPs are uniquely associated with one macronutrient at genome-wide significance (P < 5 × 10-8), while five of the 21 lead SNPs reach suggestive significance (P < 1 × 10-5) for at least one other macronutrient. While the phenotypes are genetically correlated, each phenotype carries a partially unique genetic architecture. Relative protein intake exhibits the strongest relationships with poor health, including positive genetic associations with obesity, type 2 diabetes, and heart disease (rg ≈ 0.15-0.5). In contrast, relative carbohydrate and sugar intake have negative genetic correlations with waist circumference, waist-hip ratio, and neighborhood deprivation (|rg| ≈ 0.1-0.3) and positive genetic correlations with physical activity (rg ≈ 0.1 and 0.2). Relative fat intake has no consistent pattern of genetic correlations with poor health but has a negative genetic correlation with educational attainment (rg ≈-0.1). Although our analyses do not allow us to draw causal conclusions, we find no evidence of negative health consequences associated with relative carbohydrate, sugar, or fat intake. However, our results are consistent with the hypothesis that relative protein intake plays a role in the etiology of metabolic dysfunction.


Asunto(s)
Diabetes Mellitus Tipo 2 , Estudio de Asociación del Genoma Completo , Índice de Masa Corporal , Diabetes Mellitus Tipo 2/genética , Dieta , Genómica , Humanos , Estilo de Vida
18.
Gut ; 2021 Apr 22.
Artículo en Inglés | MEDLINE | ID: mdl-33888516

RESUMEN

OBJECTIVE: Haemorrhoidal disease (HEM) affects a large and silently suffering fraction of the population but its aetiology, including suspected genetic predisposition, is poorly understood. We report the first genome-wide association study (GWAS) meta-analysis to identify genetic risk factors for HEM to date. DESIGN: We conducted a GWAS meta-analysis of 218 920 patients with HEM and 725 213 controls of European ancestry. Using GWAS summary statistics, we performed multiple genetic correlation analyses between HEM and other traits as well as calculated HEM polygenic risk scores (PRS) and evaluated their translational potential in independent datasets. Using functional annotation of GWAS results, we identified HEM candidate genes, which differential expression and coexpression in HEM tissues were evaluated employing RNA-seq analyses. The localisation of expressed proteins at selected loci was investigated by immunohistochemistry. RESULTS: We demonstrate modest heritability and genetic correlation of HEM with several other diseases from the GI, neuroaffective and cardiovascular domains. HEM PRS validated in 180 435 individuals from independent datasets allowed the identification of those at risk and correlated with younger age of onset and recurrent surgery. We identified 102 independent HEM risk loci harbouring genes whose expression is enriched in blood vessels and GI tissues, and in pathways associated with smooth muscles, epithelial and endothelial development and morphogenesis. Network transcriptomic analyses highlighted HEM gene coexpression modules that are relevant to the development and integrity of the musculoskeletal and epidermal systems, and the organisation of the extracellular matrix. CONCLUSION: HEM has a genetic component that predisposes to smooth muscle, epithelial and connective tissue dysfunction.

19.
Am J Hum Genet ; 102(5): 760-775, 2018 05 03.
Artículo en Inglés | MEDLINE | ID: mdl-29706349

RESUMEN

Finland provides unique opportunities to investigate population and medical genomics because of its adoption of unified national electronic health records, detailed historical and birth records, and serial population bottlenecks. We assembled a comprehensive view of recent population history (≤100 generations), the timespan during which most rare-disease-causing alleles arose, by comparing pairwise haplotype sharing from 43,254 Finns to that of 16,060 Swedes, Estonians, Russians, and Hungarians from geographically and linguistically adjacent countries with different population histories. We find much more extensive sharing in Finns, with at least one ≥ 5 cM tract on average between pairs of unrelated individuals. By coupling haplotype sharing with fine-scale birth records from more than 25,000 individuals, we find that although haplotype sharing broadly decays with geographical distance, there are pockets of excess haplotype sharing; individuals from northeast Finland typically share several-fold more of their genome in identity-by-descent segments than individuals from southwest regions. We estimate recent effective population-size changes through time across regions of Finland, and we find that there was more continuous gene flow as Finns migrated from southwest to northeast between the early- and late-settlement regions than was dichotomously described previously. Lastly, we show that haplotype sharing is locally enriched by an order of magnitude among pairs of individuals sharing rare alleles and especially among pairs sharing rare disease-causing variants. Our work provides a general framework for using haplotype sharing to reconstruct an integrative view of recent population history and gain insight into the evolutionary origins of rare variants contributing to disease.


Asunto(s)
Enfermedad/genética , Genética de Población , Haplotipos/genética , Finlandia , Flujo Génico , Variación Genética , Geografía , Migración Humana , Humanos , Parto , Densidad de Población , Factores de Tiempo
20.
Nature ; 523(7561): 459-462, 2015 Jul 23.
Artículo en Inglés | MEDLINE | ID: mdl-26131930

RESUMEN

Homozygosity has long been associated with rare, often devastating, Mendelian disorders, and Darwin was one of the first to recognize that inbreeding reduces evolutionary fitness. However, the effect of the more distant parental relatedness that is common in modern human populations is less well understood. Genomic data now allow us to investigate the effects of homozygosity on traits of public health importance by observing contiguous homozygous segments (runs of homozygosity), which are inferred to be homozygous along their complete length. Given the low levels of genome-wide homozygosity prevalent in most human populations, information is required on very large numbers of people to provide sufficient power. Here we use runs of homozygosity to study 16 health-related quantitative traits in 354,224 individuals from 102 cohorts, and find statistically significant associations between summed runs of homozygosity and four complex traits: height, forced expiratory lung volume in one second, general cognitive ability and educational attainment (P < 1 × 10(-300), 2.1 × 10(-6), 2.5 × 10(-10) and 1.8 × 10(-10), respectively). In each case, increased homozygosity was associated with decreased trait value, equivalent to the offspring of first cousins being 1.2 cm shorter and having 10 months' less education. Similar effect sizes were found across four continental groups and populations with different degrees of genome-wide homozygosity, providing evidence that homozygosity, rather than confounding, directly contributes to phenotypic variance. Contrary to earlier reports in substantially smaller samples, no evidence was seen of an influence of genome-wide homozygosity on blood pressure and low density lipoprotein cholesterol, or ten other cardio-metabolic traits. Since directional dominance is predicted for traits under directional evolutionary selection, this study provides evidence that increased stature and cognitive function have been positively selected in human evolution, whereas many important risk factors for late-onset complex diseases may not have been.


Asunto(s)
Estatura/genética , Cognición , Homocigoto , Evolución Biológica , Presión Sanguínea/genética , LDL-Colesterol/genética , Estudios de Cohortes , Escolaridad , Femenino , Volumen Espiratorio Forzado/genética , Genoma Humano/genética , Humanos , Mediciones del Volumen Pulmonar , Masculino , Fenotipo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA