Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 97
Filtrar
Más filtros

Intervalo de año de publicación
1.
Proc Natl Acad Sci U S A ; 120(33): e2301366120, 2023 08 15.
Artículo en Inglés | MEDLINE | ID: mdl-37549257

RESUMEN

A wide range of macromolecules can undergo phase separation, forming biomolecular condensates in living cells. These membraneless organelles are typically highly dynamic, formed reversibly, and carry out essential functions in biological systems. Crucially, however, a further liquid-to-solid transition of the condensates can lead to irreversible pathological aggregation and cellular dysfunction associated with the onset and development of neurodegenerative diseases. Despite the importance of this liquid-to-solid transition of proteins, the mechanism by which it is initiated in normally functional condensates is unknown. Here we show, by measuring the changes in structure, dynamics, and mechanics in time and space, that single-component FUS condensates do not uniformly convert to a solid gel, but rather that liquid and gel phases coexist simultaneously within the same condensate, resulting in highly inhomogeneous structures. Furthermore, our results show that this transition originates at the interface between the condensate and the dilute continuous phase, and once initiated, the gelation process propagates toward the center of the condensate. To probe such spatially inhomogeneous rheology during condensate aging, we use a combination of established micropipette aspiration experiments together with two optical techniques, spatial dynamic mapping and reflective confocal dynamic speckle microscopy. These results reveal the importance of the spatiotemporal dimension of the liquid-to-solid transition and highlight the interface of biomolecular condensates as a critical element in driving pathological protein aggregation.


Asunto(s)
Condensados Biomoleculares , Agregación Patológica de Proteínas , Humanos , Microscopía Confocal , Reología , Proteína FUS de Unión a ARN
2.
PLoS Comput Biol ; 20(4): e1012081, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38687804

RESUMEN

Epistasis among driver mutations is pervasive and explains relevant features of cancer, such as differential therapy response and convergence towards well-characterized molecular subtypes. Furthermore, a growing body of evidence suggests that tumor development could be hampered by the accumulation of slightly deleterious passenger mutations. In this work, we combined empirical epistasis networks, computer simulations, and mathematical models to explore how synergistic interactions among driver mutations affect cancer progression under the burden of slightly deleterious passengers. We found that epistasis plays a crucial role in tumor development by promoting the transformation of precancerous clones into rapidly growing tumors through a process that is analogous to evolutionary rescue. The triggering of epistasis-driven rescue is strongly dependent on the intensity of epistasis and could be a key rate-limiting step in many tumors, contributing to their unpredictability. As a result, central genes in cancer epistasis networks appear as key intervention targets for cancer therapy.


Asunto(s)
Simulación por Computador , Epistasis Genética , Modelos Genéticos , Mutación , Neoplasias , Epistasis Genética/genética , Humanos , Neoplasias/genética , Biología Computacional/métodos , Redes Reguladoras de Genes/genética
3.
Proc Natl Acad Sci U S A ; 119(26): e2119800119, 2022 06 28.
Artículo en Inglés | MEDLINE | ID: mdl-35727989

RESUMEN

Phase-separated biomolecular condensates that contain multiple coexisting phases are widespread in vitro and in cells. Multiphase condensates emerge readily within multicomponent mixtures of biomolecules (e.g., proteins and nucleic acids) when the different components present sufficient physicochemical diversity (e.g., in intermolecular forces, structure, and chemical composition) to sustain separate coexisting phases. Because such diversity is highly coupled to the solution conditions (e.g., temperature, pH, salt, composition), it can manifest itself immediately from the nucleation and growth stages of condensate formation, develop spontaneously due to external stimuli or emerge progressively as the condensates age. Here, we investigate thermodynamic factors that can explain the progressive intrinsic transformation of single-component condensates into multiphase architectures during the nonequilibrium process of aging. We develop a multiscale model that integrates atomistic simulations of proteins, sequence-dependent coarse-grained simulations of condensates, and a minimal model of dynamically aging condensates with nonconservative intermolecular forces. Our nonequilibrium simulations of condensate aging predict that single-component condensates that are initially homogeneous and liquid like can transform into gel-core/liquid-shell or liquid-core/gel-shell multiphase condensates as they age due to gradual and irreversible enhancement of interprotein interactions. The type of multiphase architecture is determined by the aging mechanism, the molecular organization of the gel and liquid phases, and the chemical makeup of the protein. Notably, we predict that interprotein disorder to order transitions within the prion-like domains of intracellular proteins can lead to the required nonconservative enhancement of intermolecular interactions. Our study, therefore, predicts a potential mechanism by which the nonequilibrium process of aging results in single-component multiphase condensates.


Asunto(s)
Envejecimiento , Condensados Biomoleculares , Proteína FUS de Unión a ARN , Envejecimiento/metabolismo , Condensados Biomoleculares/química , Condensados Biomoleculares/metabolismo , Modelos Biológicos , Simulación de Dinámica Molecular , Conformación Proteica en Lámina beta , Proteína FUS de Unión a ARN/química , Proteína FUS de Unión a ARN/metabolismo , Termodinámica
4.
J Chem Phys ; 160(17)2024 May 07.
Artículo en Inglés | MEDLINE | ID: mdl-38748001

RESUMEN

In this work, we introduce variational umbrella seeding, a novel technique for computing nucleation barriers. This new method, a refinement of the original seeding approach, is far less sensitive to the choice of order parameter for measuring the size of a nucleus. Consequently, it surpasses seeding in accuracy and umbrella sampling in computational speed. We test the method extensively and demonstrate excellent accuracy for crystal nucleation of nearly hard spheres and two distinct models of water: mW and TIP4P/ICE. This method can easily be extended to calculate nucleation barriers for homogeneous melting, condensation, and cavitation.

5.
Facial Plast Surg ; 2024 Jan 30.
Artículo en Inglés | MEDLINE | ID: mdl-38151038

RESUMEN

Hairline reduction surgery, also known as aesthetic forehead reduction, is a surgical procedure that aims to reduce the upper facial third and improve facial harmony. This article describes the anatomy of hairline advancement surgery and the surgical technique used by the author. The study included 21 patients from 2019 to 2023, and the forehead reduction length was on average 22.48 ± 2.64 mm. The most common complaint was hypoesthesia of the scalp, present in 100% of patients, resolving in all cases by 2 months after surgery. Forehead reduction surgery is among the procedures that provide more satisfaction to patients due to the great changes that it can achieve.

6.
Biophys J ; 122(14): 2973-2987, 2023 07 25.
Artículo en Inglés | MEDLINE | ID: mdl-36883003

RESUMEN

Biomolecular condensates, thought to form via liquid-liquid phase separation of intracellular mixtures, are multicomponent systems that can include diverse types of proteins and RNAs. RNA is a critical modulator of RNA-protein condensate stability, as it induces an RNA concentration-dependent reentrant phase transition-increasing stability at low RNA concentrations and decreasing it at high concentrations. Beyond concentration, RNAs inside condensates can be heterogeneous in length, sequence, and structure. Here, we use multiscale simulations to understand how different RNA parameters interact with one another to modulate the properties of RNA-protein condensates. To do so, we perform residue/nucleotide resolution coarse-grained molecular dynamics simulations of multicomponent RNA-protein condensates containing RNAs of different lengths and concentrations, and either FUS or PR25 proteins. Our simulations reveal that RNA length regulates the reentrant phase behavior of RNA-protein condensates: increasing RNA length sensitively rises the maximum value that the critical temperature of the mixture reaches, and the maximum concentration of RNA that the condensate can incorporate before beginning to become unstable. Strikingly, RNAs of different lengths are organized heterogeneously inside condensates, which allows them to enhance condensate stability via two distinct mechanisms: shorter RNA chains accumulate at the condensate's surface acting as natural biomolecular surfactants, while longer RNA chains concentrate inside the core to saturate their bonds and enhance the density of molecular connections in the condensate. Using a patchy particle model, we additionally demonstrate that the combined impact of RNA length and concentration on condensate properties is dictated by the valency, binding affinity, and polymer length of the various biomolecules involved. Our results postulate that diversity on RNA parameters within condensates allows RNAs to increase condensate stability by fulfilling two different criteria: maximizing enthalpic gain and minimizing interfacial free energy; hence, RNA diversity should be considered when assessing the impact of RNA on biomolecular condensates regulation.


Asunto(s)
Condensados Biomoleculares , Simulación de Dinámica Molecular , Termodinámica , Temperatura , ARN
7.
Chembiochem ; 24(1): e202200450, 2023 01 03.
Artículo en Inglés | MEDLINE | ID: mdl-36336658

RESUMEN

The protein high mobility group A1 (HMGA1) is an important regulator of chromatin organization and function. However, the mechanisms by which it exerts its biological function are not fully understood. Here, we report that the HMGA isoform, HMGA1a, nucleates into foci that display liquid-like properties in the nucleus, and that the protein readily undergoes phase separation to form liquid condensates in vitro. By bringing together machine-leaning modelling, cellular and biophysical experiments and multiscale simulations, we demonstrate that phase separation of HMGA1a is promoted by protein-DNA interactions, and has the potential to be modulated by post-transcriptional effects such as phosphorylation. We further show that the intrinsically disordered C-terminal tail of HMGA1a significantly contributes to its phase separation through electrostatic interactions via AT hooks 2 and 3. Our work sheds light on HMGA1 phase separation as an emergent biophysical factor in regulating chromatin structure.


Asunto(s)
Cromatina , Proteína HMGA1a , Cromatina/metabolismo , Proteína HMGA1a/genética , Proteína HMGA1a/química , Proteína HMGA1a/metabolismo , Núcleo Celular/metabolismo , ADN/metabolismo , Fosforilación
8.
Phys Rev Lett ; 130(11): 118001, 2023 Mar 17.
Artículo en Inglés | MEDLINE | ID: mdl-37001068

RESUMEN

Salty water is the most abundant electrolyte aqueous mixture on Earth, however, very little is known about the NaCl-saturated solution interfacial free energy (γ_{s}). Here, we provide the first direct estimation of γ_{s} for several NaCl crystallographic planes by means of the mold integration technique, a highly efficient computational method to evaluate interfacial free energies with anisotropic crystal resolution. Making use of the JC-SPC/E model, one of the most benchmarked force fields for NaCl water solutions, we measure γ_{s} of four different crystal planes, (100), (110), (111), and (112[over ¯]) with the saturated solution at normal conditions. We find high anisotropy between the different crystal orientations with values ranging from 100 to 150 mJ m^{-2}, and the average value of the distinct planes being γ[over ¯]_{s}=137(20) mJ m^{-2}. This value for the coexistence interfacial free energy is in reasonable agreement with previous extrapolations from nucleation studies. Our Letter represents a milestone in the computational calculation of interfacial free energies between ionic crystals and aqueous solutions.

9.
PLoS Comput Biol ; 18(2): e1009810, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-35108264

RESUMEN

Biomolecular condensates formed via liquid-liquid phase separation (LLPS) play a crucial role in the spatiotemporal organization of the cell material. Nucleic acids can act as critical modulators in the stability of these protein condensates. To unveil the role of RNA length in regulating the stability of RNA binding protein (RBP) condensates, we present a multiscale computational strategy that exploits the advantages of a sequence-dependent coarse-grained representation of proteins and a minimal coarse-grained model wherein proteins are described as patchy colloids. We find that for a constant nucleotide/protein ratio, the protein fused in sarcoma (FUS), which can phase separate on its own-i.e., via homotypic interactions-only exhibits a mild dependency on the RNA strand length. In contrast, the 25-repeat proline-arginine peptide (PR25), which does not undergo LLPS on its own at physiological conditions but instead exhibits complex coacervation with RNA-i.e., via heterotypic interactions-shows a strong dependence on the length of the RNA strands. Our minimal patchy particle simulations suggest that the strikingly different effect of RNA length on homotypic LLPS versus RBP-RNA complex coacervation is general. Phase separation is RNA-length dependent whenever the relative contribution of heterotypic interactions sustaining LLPS is comparable or higher than those stemming from protein homotypic interactions. Taken together, our results contribute to illuminate the intricate physicochemical mechanisms that influence the stability of RBP condensates through RNA inclusion.


Asunto(s)
Condensados Biomoleculares , ARN , Fenómenos Biofísicos , ARN/química , Proteínas de Unión al ARN
10.
J Chem Phys ; 158(18)2023 May 14.
Artículo en Inglés | MEDLINE | ID: mdl-37158636

RESUMEN

Computational studies of liquid water and its phase transition into vapor have traditionally been performed using classical water models. Here, we utilize the Deep Potential methodology-a machine learning approach-to study this ubiquitous phase transition, starting from the phase diagram in the liquid-vapor coexistence regime. The machine learning model is trained on ab initio energies and forces based on the SCAN density functional, which has been previously shown to reproduce solid phases and other properties of water. Here, we compute the surface tension, saturation pressure, and enthalpy of vaporization for a range of temperatures spanning from 300 to 600 K and evaluate the Deep Potential model performance against experimental results and the semiempirical TIP4P/2005 classical model. Moreover, by employing the seeding technique, we evaluate the free energy barrier and nucleation rate at negative pressures for the isotherm of 296.4 K. We find that the nucleation rates obtained from the Deep Potential model deviate from those computed for the TIP4P/2005 water model due to an underestimation in the surface tension from the Deep Potential model. From analysis of the seeding simulations, we also evaluate the Tolman length for the Deep Potential water model, which is (0.091 ± 0.008) nm at 296.4 K. Finally, we identify that water molecules display a preferential orientation in the liquid-vapor interface, in which H atoms tend to point toward the vapor phase to maximize the enthalpic gain of interfacial molecules. We find that this behavior is more pronounced for planar interfaces than for the curved interfaces in bubbles. This work represents the first application of Deep Potential models to the study of liquid-vapor coexistence and water cavitation.

11.
J Chem Phys ; 158(20)2023 May 28.
Artículo en Inglés | MEDLINE | ID: mdl-37226991

RESUMEN

One of the most accepted hypothesis to explain the anomalous behavior of water is the presence of a critical point between two liquids, the liquid-liquid critical point (LLCP), buried within the deep supercooled regime. Unfortunately, such hypothesis is hard to be experimentally confirmed due to fast freezing. Here, we show that the TIP4P/Ice water potential shifted by 400 bar can reproduce with unprecedented accuracy the experimental isothermal compressibility of water and its liquid equation of state for a wide pressure and temperature range. We find, both by extrapolation of response function maxima and by a Maxwell construction, that the location of the model LLCP is consistent with previous calculations. According to the pressure shift needed to recover the experimental behavior of supercooled water, we estimate the experimental LLCP to be located around 1250 bar and 195 K. We use the model to estimate the ice nucleation rate (J) in the vicinity of the hypothesized LLCP experimental location and obtain J = 1024 m-3 s-1. Thereby, experiments where the ratio between the cooling rate and the sample volume is equal or larger than the estimated nucleation rate could probe liquid-liquid equilibrium before freezing. Such conditions are not accessible in common experiments with microdroplets cooled at a few kelvin per second, but they could be, for instance, using nanodroplets of around 50 nm radius observed in a millisecond timescale.

12.
Proc Natl Acad Sci U S A ; 117(24): 13238-13247, 2020 06 16.
Artículo en Inglés | MEDLINE | ID: mdl-32482873

RESUMEN

One of the key mechanisms used by cells to control the spatiotemporal organization of their many components is the formation and dissolution of biomolecular condensates through liquid-liquid phase separation (LLPS). Using a minimal coarse-grained model that allows us to simulate thousands of interacting multivalent proteins, we investigate the physical parameters dictating the stability and composition of multicomponent biomolecular condensates. We demonstrate that the molecular connectivity of the condensed-liquid network-i.e., the number of weak attractive protein-protein interactions per unit of volume-determines the stability (e.g., in temperature, pH, salt concentration) of multicomponent condensates, where stability is positively correlated with connectivity. While the connectivity of scaffolds (biomolecules essential for LLPS) dominates the phase landscape, introduction of clients (species recruited via scaffold-client interactions) fine-tunes it by transforming the scaffold-scaffold bond network. Whereas low-valency clients that compete for scaffold-scaffold binding sites decrease connectivity and stability, those that bind to alternate scaffold sites not required for LLPS or that have higher-than-scaffold valencies form additional scaffold-client-scaffold bridges increasing stability. Proteins that establish more connections (via increased valencies, promiscuous binding, and topologies that enable multivalent interactions) support the stability of and are enriched within multicomponent condensates. Importantly, proteins that increase the connectivity of multicomponent condensates have higher critical points as pure systems or, if pure LLPS is unfeasible, as binary scaffold-client mixtures. Hence, critical points of accessible systems (i.e., with just a few components) might serve as a unified thermodynamic parameter to predict the composition of multicomponent condensates.

13.
Nano Lett ; 22(2): 612-621, 2022 01 26.
Artículo en Inglés | MEDLINE | ID: mdl-35001622

RESUMEN

Liquid-liquid phase separation underlies the formation of biological condensates. Physically, such systems are microemulsions that in general have a propensity to fuse and coalesce; however, many condensates persist as independent droplets in the test tube and inside cells. This stability is crucial for their function, but the physicochemical mechanisms that control the emulsion stability of condensates remain poorly understood. Here, by combining single-condensate zeta potential measurements, optical microscopy, tweezer experiments, and multiscale molecular modeling, we investigate how the nanoscale forces that sustain condensates impact their stability against fusion. By comparing peptide-RNA (PR25:PolyU) and proteinaceous (FUS) condensates, we show that a higher condensate surface charge correlates with a lower fusion propensity. Moreover, measurements of single condensate zeta potentials reveal that such systems can constitute classically stable emulsions. Taken together, these results highlight the role of passive stabilization mechanisms in protecting biomolecular condensates against coalescence.


Asunto(s)
Condensados Biomoleculares , Proteínas , Emulsiones , Proteínas/química , ARN/química , Electricidad Estática
14.
J Chem Phys ; 157(13): 134501, 2022 Oct 07.
Artículo en Inglés | MEDLINE | ID: mdl-36209006

RESUMEN

Colloidal systems possess unique features to investigate the governing principles behind liquid-to-solid transitions. The phase diagram and crystallization landscape of colloidal particles can be finely tuned by the range, number, and angular distribution of attractive interactions between the constituent particles. In this work, we present a computational study of colloidal patchy particles with high-symmetry bonding-six patches displaying octahedral symmetry-that can crystallize into distinct competing ordered phases: a cubic simple (CS) lattice, a body-centered cubic phase, and two face-centered cubic solids (orientationally ordered and disordered). We investigate the underlying mechanisms by which these competing crystals emerge from a disordered fluid at different pressures. Strikingly, we identify instances where the structure of the crystalline embryo corresponds to the stable solid, while in others, it corresponds to a metastable crystal whose nucleation is enabled by its lower interfacial free energy with the liquid. Moreover, we find the exceptional phenomenon that, due to a subtle balance between volumetric enthalpy and interfacial free energy, the CS phase nucleates via crystalline cubic nuclei rather than through spherical clusters, as the majority of crystal solids in nature. Finally, by examining growth beyond the nucleation stage, we uncover a series of alternating one-phase and two-phase crystallization mechanisms depending on whether or not the same phase that nucleates keeps growing. Taken together, we show that an octahedral distribution of attractive sites in colloidal particles results in an extremely rich crystallization landscape where subtle differences in pressure crucially determine the crystallizing polymorph.

15.
J Chem Phys ; 157(9): 094503, 2022 Sep 07.
Artículo en Inglés | MEDLINE | ID: mdl-36075712

RESUMEN

Freezing of water is the most common liquid-to-crystal phase transition on Earth; however, despite its critical implications on climate change and cryopreservation among other disciplines, its characterization through experimental and computational techniques remains elusive. In this work, we make use of computer simulations to measure the nucleation rate (J) of water at normal pressure under different supercooling conditions, ranging from 215 to 240 K. We employ two different water models: mW, a coarse-grained potential for water, and TIP4P/ICE, an atomistic nonpolarizable water model that provides one of the most accurate representations of the different ice phases. To evaluate J, we apply the Lattice Mold technique, a computational method based on the use of molds to induce the nucleus formation from the metastable liquid under conditions at which observing spontaneous nucleation would be unfeasible. With this method, we obtain estimates of the nucleation rate for ice Ih and Ic and a stacking mixture of ice Ih/Ic, reaching consensus with most of the previously reported rates, although differing with some others. Furthermore, we confirm that the predicted nucleation rates obtained by the TIP4P/ICE model are in better agreement with experimental data than those obtained through the mW potential. Taken together, our study provides a reliable methodology to measure nucleation rates in a simple and computationally efficient manner that contributes to benchmarking the freezing behavior of two popular water models.

16.
Proc Natl Acad Sci U S A ; 116(50): 25203-25213, 2019 12 10.
Artículo en Inglés | MEDLINE | ID: mdl-31754023

RESUMEN

Myotonic dystrophy type 1 (DM1) is a life-threatening and chronically debilitating neuromuscular disease caused by the expansion of a CTG trinucleotide repeat in the 3' UTR of the DMPK gene. The mutant RNA forms insoluble structures capable of sequestering RNA binding proteins of the Muscleblind-like (MBNL) family, which ultimately leads to phenotypes. In this work, we demonstrate that treatment with the antiautophagic drug chloroquine was sufficient to up-regulate MBNL1 and 2 proteins in Drosophila and mouse (HSALR) models and patient-derived myoblasts. Extra Muscleblind was functional at the molecular level and improved splicing events regulated by MBNLs in all disease models. In vivo, chloroquine restored locomotion, rescued average cross-sectional muscle area, and extended median survival in DM1 flies. In HSALR mice, the drug restored muscular strength and histopathology signs and reduced the grade of myotonia. Taken together, these results offer a means to replenish critically low MBNL levels in DM1.


Asunto(s)
Cloroquina/administración & dosificación , Proteínas de Unión al ADN/metabolismo , Proteínas de Drosophila/metabolismo , Distrofia Miotónica/tratamiento farmacológico , Distrofia Miotónica/metabolismo , Proteínas Nucleares/metabolismo , Proteínas de Unión al ARN/metabolismo , Animales , Autofagia/efectos de los fármacos , Proteínas de Unión al ADN/genética , Modelos Animales de Enfermedad , Drosophila , Proteínas de Drosophila/genética , Femenino , Humanos , Masculino , Ratones , Músculos/efectos de los fármacos , Músculos/metabolismo , Mioblastos/efectos de los fármacos , Mioblastos/metabolismo , Distrofia Miotónica/genética , Distrofia Miotónica/fisiopatología , Proteínas Nucleares/genética , Fenotipo , Empalme del ARN/efectos de los fármacos , Proteínas de Unión al ARN/genética
17.
Int J Mol Sci ; 23(3)2022 Jan 27.
Artículo en Inglés | MEDLINE | ID: mdl-35163365

RESUMEN

Omics studies are crucial to improve our understanding of myotonic dystrophy type 1 (DM1), the most common muscular dystrophy in adults. Employing tissue samples and cell lines derived from patients and animal models, omics approaches have revealed the myriad alterations in gene and microRNA expression, alternative splicing, 3' polyadenylation, CpG methylation, and proteins levels, among others, that contribute to this complex multisystem disease. In addition, omics characterization of drug candidate treatment experiments provides crucial insight into the degree of therapeutic rescue and off-target effects that can be achieved. Finally, several innovative technologies such as single-cell sequencing and artificial intelligence will have a significant impact on future DM1 research.


Asunto(s)
Biología Computacional/métodos , Distrofia Miotónica/genética , Distrofia Miotónica/metabolismo , Adulto , Empalme Alternativo , Animales , Inteligencia Artificial , Humanos , Análisis de la Célula Individual
18.
Biophys J ; 120(23): 5169-5186, 2021 12 07.
Artículo en Inglés | MEDLINE | ID: mdl-34762868

RESUMEN

One of the key mechanisms employed by cells to control their spatiotemporal organization is the formation and dissolution of phase-separated condensates. The balance between condensate assembly and disassembly can be critically regulated by the presence of RNA. In this work, we use a chemically-accurate sequence-dependent coarse-grained model for proteins and RNA to unravel the impact of RNA in modulating the transport properties and stability of biomolecular condensates. We explore the phase behavior of several RNA-binding proteins such as FUS, hnRNPA1, and TDP-43 proteins along with that of their corresponding prion-like domains and RNA recognition motifs from absence to moderately high RNA concentration. By characterizing the phase diagram, key molecular interactions, surface tension, and transport properties of the condensates, we report a dual RNA-induced behavior: on the one hand, RNA enhances phase separation at low concentration as long as the RNA radius of gyration is comparable to that of the proteins, whereas at high concentration, it inhibits the ability of proteins to self-assemble independently of its length. On the other hand, along with the stability modulation, the viscosity of the condensates can be considerably reduced at high RNA concentration as long as the length of the RNA chains is shorter than that of the proteins. Conversely, long RNA strands increase viscosity even at high concentration, but barely modify protein self-diffusion which mainly depends on RNA concentration and on the effect RNA has on droplet density. On the whole, our work rationalizes the different routes by which RNA can regulate phase separation and condensate dynamics, as well as the subsequent aberrant rigidification implicated in the emergence of various neuropathologies and age-related diseases.


Asunto(s)
Proteínas de Unión al ARN , ARN , Condensados Biomoleculares , Difusión , Dominios Proteicos , Motivo de Reconocimiento de ARN , Tensión Superficial
19.
Biophys J ; 120(7): 1219-1230, 2021 04 06.
Artículo en Inglés | MEDLINE | ID: mdl-33571491

RESUMEN

Intracellular liquid-liquid phase separation enables the formation of biomolecular condensates, such as ribonucleoprotein granules, which play a crucial role in the spatiotemporal organization of biomolecules (e.g., proteins and RNAs). Here, we introduce a patchy-particle polymer model to investigate liquid-liquid phase separation of protein-RNA mixtures. We demonstrate that at low to moderate concentrations, RNA enhances the stability of RNA-binding protein condensates because it increases the molecular connectivity of the condensed-liquid phase. Importantly, we find that RNA can also accelerate the nucleation stage of phase separation. Additionally, we assess how the capacity of RNA to increase the stability of condensates is modulated by the relative protein-protein/protein-RNA binding strengths. We find that phase separation and multiphase organization of multicomponent condensates is favored when the RNA binds with higher affinity to the lower-valency proteins in the mixture than to the cognate higher-valency proteins. Collectively, our results shed light on the roles of RNA in ribonucleoprotein granule formation and the internal structuring of stress granules.


Asunto(s)
Orgánulos , ARN , Cinética , Proteínas de Unión al ARN , Termodinámica
20.
Soft Matter ; 17(3): 489-505, 2021 Jan 21.
Artículo en Inglés | MEDLINE | ID: mdl-33346291

RESUMEN

Colloidal particles have been extensively used to comprehend the main principles governing liquid-crystal nucleation. Multiple mechanisms and frameworks have been proposed, through either experiments or computational approaches, to rationalise the ubiquitous formation of colloidal crystals. In this work, we elucidate the nucleation scenario behind the crystallization of oppositely charged colloids. By performing molecular dynamics simulations of colloidal electrolytes in combination with the Seeding technique, we evaluate the fundamental factors, such as the nucleation rate, free energy barrier, surface tension and kinetic pre-factor, that determine the liquid-to-solid transition of several crystalline polymorphs. Our results show that at a high packing fraction, there is a cross-over between the nucleation of the CsCl structure and that of a substitutionally disordered fcc phase, despite the CuAu crystal being the most stable phase. We demonstrate that the crucial factor in determining which phase nucleates the fastest is the free energy cost of the cluster formation rather than their kinetic ability to grow from the liquid. While at a low packing fraction, the stable phase, CsCl, is the one that nucleates and subsequently grows, we show how at moderate and high packing fractions, a disordered fcc phase subsequently grows regardless of the nature of the nucleating phase, termed parasitic crystallization. Taken together, our results provide a panoramic perspective of the complex nucleation scenario of oppositely charged colloids at moderate temperature and rationalise the different thermodynamic and kinetic aspects behind it.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA