Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 58
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
BMC Cancer ; 21(1): 971, 2021 Aug 30.
Artículo en Inglés | MEDLINE | ID: mdl-34461853

RESUMEN

BACKGROUND: Photodynamic therapy with a photosensitizer such as protoporphyrin-IX, a light sensitive metabolite of heme synthesis, is a highly selective treatment for various carcinomas. In previous studies, we found a significant down regulation of the relevant enzyme ferrochelatase in gastrointestinal carcinomas leading to an accumulation of protoporphyrin-IX within the tumor cells. Recent studies showed that a novel anti-cancer drug, Alectinib, an orally available, highly selective, potent second-generation inhibitor of anaplastic lymphoma tyrosinkinase binds to ferrochelatase. Therefore, we were interested to see whether Alectinib treatment might lead to an accumulation of protoporphyrin IX. METHODS: Tumor cells of different origin were cultured, treated with LED-light and Alectinib. Results were gained by flow cytometry, immunohistochemistry and western blotting. Apoptosis was determined by flow cytometric analysis of Annexin V-FITC stained cells. In addition, cells were counterstained with propidium iodide to distinguish early apoptotic cells and late apoptotic/necrotic cells. RESULTS: Here, we report that photodynamic treatment of tumor cell lines of different origin in combination with Alectinib increased protoporphyrin-IX specific fluorescence and concomitantly cell death. CONCLUSIONS: The usage of Alectinib could be another step for enhancing the effectiveness of photodynamic therapy. Further experiments will show whether photodynamic therapy in combination with Alectinib could be a new strategy for the treatment of e.g. peritoneal disseminated carcinomas.


Asunto(s)
Ácido Aminolevulínico/farmacología , Carbazoles/farmacología , Luz , Neoplasias/tratamiento farmacológico , Fotoquimioterapia/métodos , Fármacos Fotosensibilizantes/farmacología , Piperidinas/farmacología , Protoporfirinas/metabolismo , Fluorescencia , Humanos , Neoplasias/patología , Células Tumorales Cultivadas
2.
Nature ; 494(7437): 361-5, 2013 Feb 21.
Artículo en Inglés | MEDLINE | ID: mdl-23376950

RESUMEN

Cancer control by adaptive immunity involves a number of defined death and clearance mechanisms. However, efficient inhibition of exponential cancer growth by T cells and interferon-γ (IFN-γ) requires additional undefined mechanisms that arrest cancer cell proliferation. Here we show that the combined action of the T-helper-1-cell cytokines IFN-γ and tumour necrosis factor (TNF) directly induces permanent growth arrest in cancers. To safely separate senescence induced by tumour immunity from oncogene-induced senescence, we used a mouse model in which the Simian virus 40 large T antigen (Tag) expressed under the control of the rat insulin promoter creates tumours by attenuating p53- and Rb-mediated cell cycle control. When combined, IFN-γ and TNF drive Tag-expressing cancers into senescence by inducing permanent growth arrest in G1/G0, activation of p16INK4a (also known as CDKN2A), and downstream Rb hypophosphorylation at serine 795. This cytokine-induced senescence strictly requires STAT1 and TNFR1 (also known as TNFRSF1A) signalling in addition to p16INK4a. In vivo, Tag-specific T-helper 1 cells permanently arrest Tag-expressing cancers by inducing IFN-γ- and TNFR1-dependent senescence. Conversely, Tnfr1(-/-)Tag-expressing cancers resist cytokine-induced senescence and grow aggressively, even in TNFR1-expressing hosts. Finally, as IFN-γ and TNF induce senescence in numerous murine and human cancers, this may be a general mechanism for arresting cancer progression.


Asunto(s)
Senescencia Celular/inmunología , Citocinas/inmunología , Neoplasias/inmunología , Neoplasias/patología , Células TH1/inmunología , Animales , Antígenos Transformadores de Poliomavirus/genética , Antígenos Transformadores de Poliomavirus/metabolismo , Ciclo Celular , Proliferación Celular , Inhibidor p16 de la Quinasa Dependiente de Ciclina/deficiencia , Inhibidor p16 de la Quinasa Dependiente de Ciclina/genética , Inhibidor p16 de la Quinasa Dependiente de Ciclina/metabolismo , Modelos Animales de Enfermedad , Progresión de la Enfermedad , Femenino , Humanos , Interferón gamma/inmunología , Masculino , Ratones , Ratones Endogámicos NOD , Ratones SCID , Ratones Transgénicos , Oncogenes/genética , Fosfoserina/metabolismo , Receptores Tipo I de Factores de Necrosis Tumoral/metabolismo , Proteína de Retinoblastoma/química , Proteína de Retinoblastoma/metabolismo , Factor de Transcripción STAT1/metabolismo , Factores de Tiempo , Células Tumorales Cultivadas , Factor de Necrosis Tumoral alfa/inmunología , Proteína p53 Supresora de Tumor/metabolismo
3.
Arch Toxicol ; 93(8): 2247-2264, 2019 08.
Artículo en Inglés | MEDLINE | ID: mdl-31312845

RESUMEN

Prediction of drug interactions, based on the induction of drug disposition, calls for the identification of chemicals, which activate xenosensing nuclear receptors. Constitutive androstane receptor (CAR) is one of the major human xenosensors; however, the constitutive activity of its reference variant CAR1 in immortalized cell lines complicates the identification of agonists. The exclusively ligand-dependent isoform CAR3 represents an obvious alternative for screening of CAR agonists. As CAR3 is even more abundant in human liver than CAR1, identification of its agonists is also of pharmacological value in its own right. We here established a cellular high-throughput screening assay for CAR3 to identify ligands of this isoform and to analyse its suitability for identifying CAR ligands in general. Proof-of-concept screening of 2054 drug-like compounds at 10 µM resulted in the identification of novel CAR3 agonists. The CAR3 assay proved to detect the previously described CAR1 ligands in the screened libraries. However, we failed to detect CAR3-selective compounds, as the four novel agonists, which were selected for further investigations, all proved to activate CAR1 in different cellular and in vitro assays. In primary human hepatocytes, the compounds preferentially induced the expression of the prototypical CAR target gene CYP2B6. Failure to identify CAR3-selective compounds was investigated by molecular modelling, which showed that the isoform-specific insertion of five amino acids did not impact on the ligand binding pocket but only on heterodimerization with retinoid X receptor. In conclusion, we demonstrate here the usability of CAR3 for screening compound libraries for the presence of CAR agonists.


Asunto(s)
Hepatocitos/efectos de los fármacos , Ensayos Analíticos de Alto Rendimiento/métodos , Receptores Citoplasmáticos y Nucleares/agonistas , Receptores Citoplasmáticos y Nucleares/química , Núcleo Celular/efectos de los fármacos , Núcleo Celular/metabolismo , Clopidogrel/farmacología , Receptor de Androstano Constitutivo , Citocromo P-450 CYP2B6/genética , Regulación de la Expresión Génica/efectos de los fármacos , Células HEK293 , Hepatocitos/fisiología , Humanos , Modelos Moleculares , Simulación del Acoplamiento Molecular , Simulación de Dinámica Molecular , Prueba de Estudio Conceptual , Isoformas de Proteínas , Transporte de Proteínas/efectos de los fármacos , Receptores Citoplasmáticos y Nucleares/metabolismo , Receptores X Retinoide/química , Receptores X Retinoide/metabolismo
4.
J Biol Chem ; 292(16): 6478-6492, 2017 04 21.
Artículo en Inglés | MEDLINE | ID: mdl-28154184

RESUMEN

Renal cell carcinoma (RCC) is polyresistant to chemo- and radiotherapy and biologicals, including TNF-related apoptosis-inducing ligand (TRAIL). Sorafenib, a multikinase inhibitor approved for the treatment of RCC, has been shown to sensitize cancer cells to TRAIL-induced apoptosis, in particular by down-regulation of the Bak-inhibitory Bcl-2 family protein Mcl-1. Here we demonstrate that sorafenib overcomes TRAIL resistance in RCC by a mechanism that does not rely on Mcl-1 down-regulation. Instead, sorafenib induces rapid dissipation of the mitochondrial membrane potential (ΔΨm) that is accompanied by the accumulation of reactive oxygen species (ROS). Loss of ΔΨm and ROS production induced by sorafenib are independent of caspase activities and do not depend on the presence of the proapoptotic Bcl-2 family proteins Bax or Bak, indicating that both events are functionally upstream of the mitochondrial apoptosis signaling cascade. More intriguingly, we find that it is sorafenib-induced ROS accumulation that enables TRAIL to activate caspase-8 in RCC. This leads to apoptosis that involves activation of an amplification loop via the mitochondrial apoptosis pathway. Thus, our mechanistic data indicate that sorafenib bypasses central resistance mechanisms through a direct induction of ΔΨm breakdown and ROS production. Activation of this pathway might represent a useful strategy to overcome the cell-inherent resistance to cancer therapeutics, including TRAIL, in multiresistant cancers such as RCC.


Asunto(s)
Carcinoma de Células Renales/metabolismo , Resistencia a Antineoplásicos , Neoplasias Renales/metabolismo , Mitocondrias/metabolismo , Niacinamida/análogos & derivados , Compuestos de Fenilurea/farmacología , Especies Reactivas de Oxígeno/metabolismo , Apoptosis , Carcinoma de Células Renales/tratamiento farmacológico , Caspasa 8/metabolismo , Línea Celular Tumoral , Regulación hacia Abajo , Activación Enzimática , Citometría de Flujo , Humanos , Neoplasias Renales/tratamiento farmacológico , Potencial de la Membrana Mitocondrial , Proteína 1 de la Secuencia de Leucemia de Células Mieloides/metabolismo , Niacinamida/farmacología , Conformación Proteica , ARN Interferente Pequeño/metabolismo , Transducción de Señal , Sorafenib , Ligando Inductor de Apoptosis Relacionado con TNF/metabolismo , Proteína Destructora del Antagonista Homólogo bcl-2/metabolismo , Proteína X Asociada a bcl-2/metabolismo
5.
J Cell Sci ; 129(11): 2213-23, 2016 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-27076518

RESUMEN

The pro-apoptotic multidomain Bcl-2 proteins Bax and Bak (also known as BAK1) are considered the gatekeepers of the intrinsic pathway of apoptosis by triggering the mitochondrial release of cytochrome c The role of the third Bax- and Bak-homologous multidomain protein Bok, however, is still unresolved. As cells doubly deficient for Bax and Bak are largely resistant to various apoptotic stimuli, it has been proposed that Bok is either dispensable for apoptosis or that its role is dependent on Bax and Bak. Here, we demonstrate, in several cell systems, that Bok efficiently induces cytochrome c release and apoptosis even in the complete absence of both Bak and Bax. Moreover, modulation of endogenous Bok levels affects the apoptosis response. By RNA interference and targeted deletion of the Bok gene, we demonstrate that Bok can significantly influence the apoptotic response to chemotherapeutic drugs in ovarian carcinoma cells. Hence, our results not only establish Bok as a Bak- and Bax-independent apoptosis inducer, but also suggest a potential impact of Bok expression in ovarian cancer therapy.


Asunto(s)
Apoptosis , Proteínas Proto-Oncogénicas c-bcl-2/química , Proteínas Proto-Oncogénicas c-bcl-2/metabolismo , Proteína Destructora del Antagonista Homólogo bcl-2/metabolismo , Proteína X Asociada a bcl-2/metabolismo , Apoptosis/efectos de los fármacos , Citocromos c/metabolismo , Citostáticos/farmacología , Técnicas de Silenciamiento del Gen , Proteínas Fluorescentes Verdes/metabolismo , Células HCT116 , Humanos , Células MCF-7 , Mitocondrias/efectos de los fármacos , Mitocondrias/metabolismo
6.
J Biol Chem ; 291(24): 12851-12861, 2016 Jun 10.
Artículo en Inglés | MEDLINE | ID: mdl-27129283

RESUMEN

Macrophages constitute a first line of pathogen defense by triggering a number of inflammatory responses and the secretion of various pro-inflammatory cytokines. Recently, we and others found that IκBζ, an atypical IκB family member and transcriptional coactivator of selected NF-κB target genes, is essential for macrophage expression of a subset of pro-inflammatory cytokines, such as IL-6, IL-12, and CCL2. Despite defective pro-inflammatory cytokine expression, however, IκBζ-deficient mice develop symptoms of chronic inflammation. To elucidate this discrepancy, we analyzed a regulatory role of IκBζ for the expression of anti-inflammatory cytokines and identified IκBζ as an essential activator of IL-10 expression. LPS-challenged peritoneal and bone marrow-derived macrophages from IκBζ-deficient mice revealed strongly decreased transcription and secretion of IL-10 compared with wild-type mice. Moreover, ectopic expression of IκBζ was sufficient to stimulate Il10 transcription. On the molecular level, IκBζ directly activated the Il10 promoter at a proximal κB site and was required for the transcription-enhancing trimethylation of histone 3 at lysine 4. Together, our findings show for the first time the IκBζ-dependent expression of an anti-inflammatory cytokine that is crucial in controlling immune responses.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/metabolismo , Interleucina-10/metabolismo , Macrófagos/metabolismo , FN-kappa B/metabolismo , Proteínas Nucleares/metabolismo , Proteínas Adaptadoras Transductoras de Señales/genética , Animales , Línea Celular , Células Cultivadas , Embrión de Mamíferos/citología , Femenino , Fibroblastos/citología , Fibroblastos/metabolismo , Expresión Génica , Immunoblotting , Inflamación/genética , Inflamación/metabolismo , Mediadores de Inflamación/metabolismo , Interleucina-10/genética , Macrófagos/citología , Macrófagos Peritoneales/citología , Macrófagos Peritoneales/metabolismo , Ratones Endogámicos C57BL , Ratones Noqueados , FN-kappa B/antagonistas & inhibidores , Proteínas Nucleares/genética , Regiones Promotoras Genéticas/genética , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa
7.
Circ Res ; 115(7): 662-7, 2014 Sep 12.
Artículo en Inglés | MEDLINE | ID: mdl-25070003

RESUMEN

RATIONALE: Atherosclerosis is a widespread and devastating disease, but the origins of cells within atherosclerotic plaques are not well defined. OBJECTIVE: To investigate the specific contribution of vascular smooth muscle cells (SMCs) to atherosclerotic plaque formation by genetic inducible fate mapping in mice. METHODS AND RESULTS: Vascular SMCs were genetically pulse-labeled using the tamoxifen-dependent Cre recombinase, CreER(T2), expressed from the endogenous SM22α locus combined with Cre-activatable reporter genes that were integrated into the ROSA26 locus. Mature SMCs in the arterial media were labeled by tamoxifen treatment of young apolipoprotein E-deficient mice before the development of atherosclerosis and then their fate was monitored in older atherosclerotic animals. We found that medial SMCs can undergo clonal expansion and convert to macrophage-like cells that have lost classic SMC marker expression and make up a major component of advanced atherosclerotic lesions. CONCLUSIONS: This study provides strong in vivo evidence for smooth muscle-to-macrophage transdifferentiation and supports an important role of SMC plasticity in atherogenesis. Targeting this type of SMC phenotypic conversion might be a novel strategy for the treatment of atherosclerosis, as well as other diseases with a smooth muscle component.


Asunto(s)
Transdiferenciación Celular , Macrófagos/patología , Músculo Liso Vascular/patología , Miocitos del Músculo Liso/patología , Placa Aterosclerótica/patología , Animales , Apolipoproteínas E/genética , Apolipoproteínas E/metabolismo , Macrófagos/metabolismo , Ratones , Proteínas de Microfilamentos/genética , Proteínas de Microfilamentos/metabolismo , Proteínas Musculares/genética , Proteínas Musculares/metabolismo , Miocitos del Músculo Liso/metabolismo , Placa Aterosclerótica/metabolismo
8.
Nucleic Acids Res ; 42(6): e41, 2014 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-24371283

RESUMEN

DNA damage is tightly associated with various biological and pathological processes, such as aging and tumorigenesis. Although detection of DNA damage is attracting increasing attention, only a limited number of methods are available to quantify DNA lesions, and these techniques are tedious or only detect global DNA damage. In this study, we present a high-sensitivity long-run real-time PCR technique for DNA-damage quantification (LORD-Q) in both the mitochondrial and nuclear genome. While most conventional methods are of low-sensitivity or restricted to abundant mitochondrial DNA samples, we established a protocol that enables the accurate sequence-specific quantification of DNA damage in >3-kb probes for any mitochondrial or nuclear DNA sequence. In order to validate the sensitivity of this method, we compared LORD-Q with a previously published qPCR-based method and the standard single-cell gel electrophoresis assay, demonstrating a superior performance of LORD-Q. Exemplarily, we monitored induction of DNA damage and repair processes in human induced pluripotent stem cells and isogenic fibroblasts. Our results suggest that LORD-Q provides a sequence-specific and precise method to quantify DNA damage, thereby allowing the high-throughput assessment of DNA repair, genotoxicity screening and various other processes for a wide range of life science applications.


Asunto(s)
Núcleo Celular/genética , Daño del ADN , Genoma Mitocondrial , Reacción en Cadena en Tiempo Real de la Polimerasa/métodos , Células Cultivadas , Ensayo Cometa , ADN Mitocondrial/química , Humanos , Células Jurkat
9.
Angew Chem Int Ed Engl ; 55(3): 1192-5, 2016 Jan 18.
Artículo en Inglés | MEDLINE | ID: mdl-26662792

RESUMEN

Histone deacetylases (HDACs) regulate the function and activity of numerous cellular proteins by removing acetylation marks from regulatory lysine residues. We have developed peptide-based HDAC probes that contain hydroxamate amino acids of various lengths to replace modified lysine residues in the context of known acetylation sites. The interaction profiles of all human HDACs were studied with three sets of probes, which derived from different acetylation sites, and sequence context was found to have a strong impact on substrate recognition and composition of HDAC complexes. By investigating K382 acetylation of the tumor suppressor p53 as an example, we further demonstrate that the interaction profiles reflect the catalytic activities of respective HDACs. These results underline the utility of the newly established probes for deciphering not only activity, but also substrate selectivity and composition of endogenous HDAC complexes, which can hardly be achieved otherwise.


Asunto(s)
Histona Desacetilasas/metabolismo , Sondas Moleculares , Línea Celular , Humanos , Espectrometría de Masas , Especificidad por Sustrato , Espectrometría de Masas en Tándem
10.
J Cell Sci ; 126(Pt 16): 3738-45, 2013 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-23781024

RESUMEN

Cellular senescence, a state of sustained cell cycle arrest, has been identified as an important anti-tumor barrier. Senescent cells secrete various growth factors and cytokines, such as IL6 and IL8, which collectively constitute the senescence-associated secretory phenotype (SASP). The SASP can signal to the tumor environment and elicit the immune-mediated clearance of tumor cells or, depending on the context, could potentially promote tumor progression. Despite the importance of the SASP to tumor biology, its regulation remains relatively unknown. Here, we show that IκBζ, an atypical member of the inhibitor of NFκB proteins and selective coactivator of particular NFκB target genes, is an important regulator of SASP expression. Several models of DNA damage- and oncogene-induced senescence revealed a robust induction of IκBζ expression. RNAi-mediated knockdown of IκBζ impaired IL6 and IL8 expression, whereas transgenic IκBζ expression resulted in enhanced SASP cytokine expression. Importantly, during senescence of IκBζ knockout cells induction of IL6 and IL8, but not of the cell cycle inhibitor p21(WAF/CIP1), was completely abolished. Thus, we propose an important and hitherto unappreciated role of IκBζ in SASP formation in both DNA damage- and oncogene-induced senescence.


Asunto(s)
Daño del ADN , Proteínas I-kappa B/metabolismo , Puntos de Control del Ciclo Celular , Línea Celular Tumoral , Senescencia Celular/genética , Senescencia Celular/fisiología , Citocinas/metabolismo , Humanos , Proteínas I-kappa B/biosíntesis , Proteínas I-kappa B/genética , Células MCF-7 , Oncogenes , Fenotipo , Transducción de Señal
11.
J Immunol ; 190(9): 4812-20, 2013 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-23547114

RESUMEN

CCL2, also referred to as MCP-1, is critically involved in directing the migration of blood monocytes to sites of inflammation. Consequently, excessive CCL2 secretion has been linked to many inflammatory diseases, whereas a lack of expression severely impairs immune responsiveness. We demonstrate that IκBζ, an atypical IκB family member and transcriptional coactivator required for the selective expression of a subset of NF-κB target genes, is a key activator of the Ccl2 gene. IκBζ-deficient macrophages exhibited impaired secretion of CCL2 when challenged with diverse inflammatory stimuli, such as LPS or peptidoglycan. These findings were reflected at the level of Ccl2 gene expression, which was tightly coupled to the presence of IκBζ. Moreover, mechanistic insights acquired by chromatin immunoprecipitation demonstrate that IκBζ is directly recruited to the proximal promoter region of the Ccl2 gene and is required for transcription-enhancing histone H3 at lysine-4 trimethylation. Finally, IκBζ-deficient mice showed significantly impaired CCL2 secretion and monocyte infiltration in an experimental model of peritonitis. Together, these findings suggest a distinguished role of IκBζ in mediating the targeted recruitment of monocytes in response to local inflammatory events.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/genética , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Quimiocina CCL2/genética , Quimiocina CCL2/metabolismo , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Transcripción Genética/genética , Proteínas Adaptadoras Transductoras de Señales/inmunología , Animales , Células Cultivadas , Quimiocina CCL2/inmunología , Femenino , Expresión Génica/genética , Expresión Génica/inmunología , Histonas/genética , Histonas/inmunología , Histonas/metabolismo , Inflamación/genética , Inflamación/inmunología , Inflamación/metabolismo , Lipopolisacáridos/inmunología , Macrófagos/inmunología , Macrófagos/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Monocitos/inmunología , Monocitos/metabolismo , FN-kappa B/genética , FN-kappa B/inmunología , FN-kappa B/metabolismo , Proteínas Nucleares/inmunología , Peritonitis/genética , Peritonitis/inmunología , Peritonitis/metabolismo , Regiones Promotoras Genéticas/genética , Regiones Promotoras Genéticas/inmunología , Transcripción Genética/inmunología
12.
Biochim Biophys Acta ; 1833(12): 3013-3024, 2013 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-23954441

RESUMEN

The attachment of organelles to the cytoskeleton and directed organelle transport is essential for cellular morphology and function. In contrast to other cell organelles like the endoplasmic reticulum or the Golgi apparatus, peroxisomes are evenly distributed in the cytoplasm, which is achieved by binding of peroxisomes to microtubules and their bidirectional transport by the microtubule motor proteins kinesin-1 (Kif5) and cytoplasmic dynein. KifC3, belonging to the group of C-terminal kinesins, has been identified to interact with the human peroxin PEX1 in a yeast two-hybrid screen. We investigated the potential involvement of KifC3 in peroxisomal transport. Interaction of KifC3 and the AAA-protein (ATPase associated with various cellular activities) PEX1 was confirmed by in vivo colocalization and by coimmunoprecipitation from cell lysates. Furthermore, knockdown of KifC3 using RNAi resulted in an increase of cells with perinuclear-clustered peroxisomes, indicating enhanced minus-end directed motility of peroxisomes. The occurrence of this peroxisomal phenotype was cell cycle phase independent, while microtubules were essential for phenotype formation. We conclude that KifC3 may play a regulatory role in minus-end directed peroxisomal transport for example by blocking the motor function of dynein at peroxisomes. Knockdown of KifC3 would then lead to increased minus-end directed peroxisomal transport and cause the observed peroxisomal clustering at the microtubule-organizing center.


Asunto(s)
Cinesinas/metabolismo , Mamíferos/metabolismo , Orgánulos/metabolismo , Peroxisomas/metabolismo , ATPasas Asociadas con Actividades Celulares Diversas , Animales , Ciclo Celular , Línea Celular , Análisis por Conglomerados , Retículo Endoplásmico/metabolismo , Técnicas de Silenciamiento del Gen , Humanos , Proteínas de la Membrana/metabolismo , Ratones , Microtúbulos/metabolismo , Mitocondrias/metabolismo , Fenotipo , Unión Proteica
13.
Int J Cancer ; 134(1): 235-43, 2014 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-23797800

RESUMEN

Therapy-induced senescence (TIS) as a permanent growth arrest can be induced by various stimuli, including anticancer compounds. TIS emerged as a promising strategy to overcome resistance phenomena. However, senescent cancer cells might regain proliferation activity in vivo or even secrete tumor-promoting cytokines. Therefore, successful exploitation of TIS in cancer treatment simultaneously requires the development of effective strategies to eliminate senescent cancer cells. Virotherapy aims to selectively hit tumor cells, thus a combination with senescence-inducing drugs was explored. As a model, we chose measles vaccine virus (MeV), which does not interfere with cellular senescence by itself. In different tumor cell types, such as hepatoma, pancreatic and mammary gland carcinoma, we demonstrate efficient viral replication and lysis after TIS by gemcitabine, doxorubicin or taxol. Applying real time imaging, we even found an accelerated lysis of senescent cancer cells, supporting an enhanced viral replication with an increase in cell-associated and released infectious MeV particles. In summary, we show as a proof-of-concept that senescent tumor cells can be efficiently exploited as virus host cells by oncolytic MeV. These observations open up a new field for preclinical and clinical research to further investigate TIS and oncolytic viruses as an attractive combinatorial future treatment approach.


Asunto(s)
Senescencia Celular/fisiología , Resistencia a Antineoplásicos/fisiología , Virus del Sarampión/fisiología , Viroterapia Oncolítica/métodos , Virus Oncolíticos/fisiología , Antineoplásicos/farmacología , Línea Celular Tumoral , Senescencia Celular/efectos de los fármacos , Citometría de Flujo , Humanos , Vacuna Antisarampión/uso terapéutico , Neoplasias/terapia , Neoplasias/virología
14.
Cell Death Dis ; 15(4): 290, 2024 Apr 24.
Artículo en Inglés | MEDLINE | ID: mdl-38658567

RESUMEN

High-grade serous ovarian cancer (HGSOC) represents the most common and lethal subtype of ovarian cancer. Despite initial response to platinum-based standard therapy, patients commonly suffer from relapse that likely originates from drug-tolerant persister (DTP) cells. We generated isogenic clones of treatment-naïve and cisplatin-tolerant persister HGSOC cells. In addition, single-cell RNA sequencing of barcoded cells was performed in a xenograft model with HGSOC cell lines after platinum-based therapy. Published single-cell RNA-sequencing data from neo-adjuvant and non-treated HGSOC patients and patient data from TCGA were analyzed. DTP-derived cells exhibited morphological alterations and upregulation of epithelial-mesenchymal transition (EMT) markers. An aggressive subpopulation of DTP-derived cells showed high expression of the stress marker ATF3. Knockdown of ATF3 enhanced the sensitivity of aggressive DTP-derived cells to cisplatin-induced cell death, implying a role for ATF3 stress response in promoting a drug tolerant persister cell state. Furthermore, single cell lineage tracing to detect transcriptional changes in a HGSOC cell line-derived xenograft relapse model showed that cells derived from relapsed solid tumors express increased levels of EMT and multiple endoplasmic reticulum (ER) stress markers, including ATF3. Single cell RNA sequencing of epithelial cells from four HGSOC patients also identified a small cell population resembling DTP cells in all samples. Moreover, analysis of TCGA data from 259 HGSOC patients revealed a significant progression-free survival advantage for patients with low expression of the ATF3-associated partial EMT genes. These findings suggest that increased ATF3 expression together with partial EMT promote the development of aggressive DTP, and thereby relapse in HGSOC patients.


Asunto(s)
Factor de Transcripción Activador 3 , Cisplatino , Resistencia a Antineoplásicos , Transición Epitelial-Mesenquimal , Neoplasias Ováricas , Humanos , Factor de Transcripción Activador 3/metabolismo , Factor de Transcripción Activador 3/genética , Femenino , Cisplatino/farmacología , Cisplatino/uso terapéutico , Línea Celular Tumoral , Resistencia a Antineoplásicos/genética , Resistencia a Antineoplásicos/efectos de los fármacos , Transición Epitelial-Mesenquimal/efectos de los fármacos , Transición Epitelial-Mesenquimal/genética , Neoplasias Ováricas/tratamiento farmacológico , Neoplasias Ováricas/genética , Neoplasias Ováricas/patología , Neoplasias Ováricas/metabolismo , Animales , Ratones , Ensayos Antitumor por Modelo de Xenoinjerto , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos
16.
Front Oncol ; 13: 1190988, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37305581

RESUMEN

Introduction: Malignant pleural mesothelioma (MPM) is a neoplasm with dismal prognosis and notorious resistance to the standard therapeutics cisplatin and pemetrexed. Chalcone derivatives are efficacious anti-cancer agents with minimal toxicity and have, therefore, gained pharmaceutical interest. Here, we investigated the efficacy of CIT-026 and CIT-223, two indolyl-chalcones (CITs), to inhibit growth and viability of MPM cells and defined the mechanism by which the compounds induce cell death. Methods: The effects of CIT-026 and CIT-223 were analyzed in five MPM cell lines, using viability, immunofluorescence, real-time cell death monitoring, and tubulin polymerization assays, along with siRNA knockdown. Phospho-kinase arrays and immunoblotting were used to identify signaling molecules that contribute to cell death. Results: CIT-026 and CIT-223 were toxic in all cell lines at sub-micromolar concentrations, in particular in MPM cells resistant to cisplatin and pemetrexed, while normal fibroblasts were only modestly affected. Both CITs targeted tubulin polymerization via (1) direct interaction with tubulin and (2) phosphorylation of microtubule regulators STMN1, CRMP2 and WNK1. Formation of aberrant tubulin fibers caused abnormal spindle morphology, mitotic arrest and apoptosis. CIT activity was not reduced in CRMP2-negative and STMN1-silenced MPM cells, indicating that direct tubulin targeting is sufficient for toxic effects of CITs. Discussion: CIT-026 and CIT-223 are highly effective inducers of tumor cell apoptosis by disrupting microtubule assembly, with only modest effects on non-malignant cells. CITs are potent anti-tumor agents against MPM cells, in particular cells resistant to standard therapeutics, and thus warrant further evaluation as potential small-molecule therapeutics in MPM.

17.
Cell Death Discov ; 8(1): 215, 2022 Apr 20.
Artículo en Inglés | MEDLINE | ID: mdl-35443750

RESUMEN

Enhanced expression of anti-apoptotic B-cell lymphoma 2 (BCL-2) protein is frequent in cancer. Targeting of BCL-2 with the specific inhibitor ABT-199 (Venetoclax) has significant clinical activity in malignant diseases such as chronic lymphocytic leukemia and multiple myeloma. The small molecule drug ABT-199 mimics the pro-apoptotic BCL-2 homology domain 3 of BH3-only proteins and blocks the hydrophobic BC-groove in BCL-2. We have previously shown that ABT-199 synergizes with the proteasome inhibitor (PI) bortezomib in soft tissue sarcoma derived cells and cell lines to induce apoptosis. Synergistic apoptosis induction relies on the pore-forming effector BAX and expression of the pro-apoptotic BH3-only protein NOXA. Bortezomib augments expression of NOXA by blocking its proteasomal degradation. Interestingly, shown here for the first time, expression of NOXA is strongly enhanced by ABT-199 induced integrated stress response (ISR). ISR transcription factors ATF3 & ATF4 mediate transactivation of the BH3-only protein NOXA which specifically inhibits the anti-apoptotic MCL-1. Thus, NOXA potentiates the efficacy of the BCL-2 inhibitor ABT-199 by simultaneous inhibition of MCL-1. Hence, ABT-199 has a double impact by directly blocking anti-apoptotic BCL-2 and inhibiting MCL-1 via transactivated NOXA. By preventing degradation of NOXA PIs synergize with ABT-199. Synergism of ABT-199 and PIs therefore occurs on several, previously unexpected levels. This finding should prompt clinical evaluation of combinatorial regimens in further malignancies.

18.
Cell Biosci ; 12(1): 50, 2022 Apr 27.
Artículo en Inglés | MEDLINE | ID: mdl-35477555

RESUMEN

BACKGROUND: Despite advances in treatment of patients with non-small cell lung cancer, carriers of certain genetic alterations are prone to failure. One such factor frequently mutated, is the tumor suppressor PTEN. These tumors are supposed to be more resistant to radiation, chemo- and immunotherapy. RESULTS: We demonstrate that loss of PTEN led to altered expression of transcriptional programs which directly regulate therapy resistance, resulting in establishment of radiation resistance. While PTEN-deficient tumor cells were not dependent on DNA-PK for IR resistance nor activated ATR during IR, they showed a significant dependence for the DNA damage kinase ATM. Pharmacologic inhibition of ATM, via KU-60019 and AZD1390 at non-toxic doses, restored and even synergized with IR in PTEN-deficient human and murine NSCLC cells as well in a multicellular organotypic ex vivo tumor model. CONCLUSION: PTEN tumors are addicted to ATM to detect and repair radiation induced DNA damage. This creates an exploitable bottleneck. At least in cellulo and ex vivo we show that low concentration of ATM inhibitor is able to synergise with IR to treat PTEN-deficient tumors in genetically well-defined IR resistant lung cancer models.

19.
Nucleic Acids Res ; 37(19): 6414-28, 2009 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-19720733

RESUMEN

Topoisomerase I is essential for DNA metabolism in nuclei and mitochondria. In yeast, a single topoisomerase I gene provides for both organelles. In vertebrates, topoisomerase I is divided into nuclear and mitochondrial paralogs (Top1 and Top1mt). To assess the meaning of this gene duplication, we targeted Top1 to mitochondria or Top1mt to nuclei. Overexpression in the fitting organelle served as control. Targeting of Top1 to mitochondria blocked transcription and depleted mitochondrial DNA. This was also seen with catalytically inactive Top1 mutants, but not with Top1mt overexpressed in mitochondria. Targeting of Top1mt to the nucleus revealed that it was much less able to interact with mitotic chromosomes than Top1 overexpressed in the nucleus. Similar experiments with Top1/Top1mt hybrids assigned these functional differences to structural divergences in the DNA-binding core domains. We propose that adaptation of this domain to different chromatin environments in nuclei and mitochondria has driven evolutional development and conservation of organelle-restricted topoisomerase I paralogs in vertebrates.


Asunto(s)
ADN-Topoisomerasas de Tipo I/metabolismo , ADN Mitocondrial/metabolismo , Adaptación Fisiológica , Línea Celular , Núcleo Celular/enzimología , Cromosomas/enzimología , ADN/química , ADN/metabolismo , ADN-Topoisomerasas de Tipo I/química , ADN-Topoisomerasas de Tipo I/genética , Duplicación de Gen , Humanos , Mitocondrias/enzimología , Fenotipo , Estructura Terciaria de Proteína , Transcripción Genética
20.
Cell Death Dis ; 12(8): 736, 2021 07 26.
Artículo en Inglés | MEDLINE | ID: mdl-34312366

RESUMEN

Hepatocellular carcinoma (HCC) represents a global health challenge with limited therapeutic options. Anti-angiogenic immune checkpoint inhibitor-based combination therapy has been introduced for progressed HCC, but improves survival only in a subset of HCC patients. Tyrosine-kinase inhibitors (TKI) such as sorafenib represent an alternative treatment option but have only modest efficacy. Using different HCC cell lines and HCC tissues from various patients reflecting HCC heterogeneity, we investigated whether the sorafenib response could be enhanced by combination with pro-apoptotic agents, such as TNF-related apoptosis-inducing ligand (TRAIL) or the BH3-mimetic ABT-737, which target the death receptor and mitochondrial pathway of apoptosis, respectively. We found that both agents could enhance sorafenib-induced cell death which was, however, dependent on specific BH3-only proteins. TRAIL augmented sorafenib-induced cell death only in NOXA-expressing HCC cells, whereas ABT-737 enhanced the sorafenib response also in NOXA-deficient cells. ABT-737, however, failed to augment sorafenib cytotoxicity in the absence of BIM, even when NOXA was strongly expressed. In the presence of NOXA, BIM-deficient HCC cells could be in turn strongly sensitized for cell death induction by the combination of sorafenib with TRAIL. Accordingly, HCC tissues sensitive to apoptosis induction by sorafenib and TRAIL revealed enhanced NOXA expression compared to HCC tissues resistant to this treatment combination. Thus, our results suggest that BH3-only protein expression determines the treatment response of HCC to different sorafenib-based drug combinations. Individual profiling of BH3-only protein expression might therefore assist patient stratification to certain TKI-based HCC therapies.


Asunto(s)
Carcinoma Hepatocelular/tratamiento farmacológico , Carcinoma Hepatocelular/metabolismo , Neoplasias Hepáticas/tratamiento farmacológico , Neoplasias Hepáticas/metabolismo , Proteínas de Transporte de Membrana Mitocondrial/metabolismo , Sorafenib/uso terapéutico , Apoptosis/efectos de los fármacos , Proteína 11 Similar a Bcl2/metabolismo , Compuestos de Bifenilo/farmacología , Carcinoma Hepatocelular/patología , Caspasas/metabolismo , Muerte Celular/efectos de los fármacos , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Activación Enzimática/efectos de los fármacos , Humanos , Antígeno Ki-67/metabolismo , Neoplasias Hepáticas/patología , Proteína 1 de la Secuencia de Leucemia de Células Mieloides/metabolismo , Nitrofenoles/farmacología , Piperazinas/farmacología , Proteínas Proto-Oncogénicas c-bcl-2/metabolismo , Sorafenib/farmacología , Sulfonamidas/farmacología , Ligando Inductor de Apoptosis Relacionado con TNF/farmacología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA