RESUMEN
This study aimed to elucidate the mechanisms of melatonin to manage neurological damage in Alzheimer's disease (AD) induced in ovariectomized rats. Forty adult female rats were enrolled in our study and were classified as; gonad intact control, ovariectomized control group, ovariectomized rats received melatonin, ovariectomized rats injected with AlCl3 to induce AD and AD-induced rats treated with melatonin. Hydrogen peroxide (H2O2), malondialdehyde (MDA), total antioxidant capacity (TAC), superoxide dismutase (SOD), catalase (CAT), B cell lymphoma 2 (Bcl-2), brain derived neurotrophic factor (BDNF), acetylcholinesterase (AchE) and acetylcholine (Ach) were estimated in the brain tissues of the different groups. Treatment of AD-induced rats with melatonin produced marked improvement in the most studied biomarkers which was confirmed by histological investigation of the brain. In Conclusion, melatonin significantly ameliorates the neurodegeneration characteristic of AD in experimental animal model due to its antioxidant, antiapoptotic, neurotrophic and anti-amyloidogenic activities.
RESUMEN
OBJECTIVES: This study is concerned with assessing the role of exposure to radio frequency radiation (RFR) emitted either from mobiles or base stations and its relations with human's hormone profiles. DESIGN AND METHODS: All volunteers' samples were collected for hormonal analysis. RESULTS: This study showed significant decrease in volunteers' ACTH, cortisol, thyroid hormones, prolactin for young females, and testosterone levels. CONCLUSION: The present study revealed that high RFR effects on pituitary-adrenal axis.