Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 43
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Nature ; 626(8001): 1108-1115, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38326622

RESUMEN

Psychosocial stress has profound effects on the body, including the immune system and the brain1,2. Although a large number of pre-clinical and clinical studies have linked peripheral immune system alterations to stress-related disorders such as major depressive disorder (MDD)3, the underlying mechanisms are not well understood. Here we show that expression of a circulating myeloid cell-specific proteinase, matrix metalloproteinase 8 (MMP8), is increased in the serum of humans with MDD as well as in stress-susceptible mice following chronic social defeat stress (CSDS). In mice, we show that this increase leads to alterations in extracellular space and neurophysiological changes in the nucleus accumbens (NAc), as well as altered social behaviour. Using a combination of mass cytometry and single-cell RNA sequencing, we performed high-dimensional phenotyping of immune cells in circulation and in the brain and demonstrate that peripheral monocytes are strongly affected by stress. In stress-susceptible mice, both circulating monocytes and monocytes that traffic to the brain showed increased Mmp8 expression following chronic social defeat stress. We further demonstrate that circulating MMP8 directly infiltrates the NAc parenchyma and controls the ultrastructure of the extracellular space. Depleting MMP8 prevented stress-induced social avoidance behaviour and alterations in NAc neurophysiology and extracellular space. Collectively, these data establish a mechanism by which peripheral immune factors can affect central nervous system function and behaviour in the context of stress. Targeting specific peripheral immune cell-derived matrix metalloproteinases could constitute novel therapeutic targets for stress-related neuropsychiatric disorders.


Asunto(s)
Trastorno Depresivo Mayor , Metaloproteinasa 8 de la Matriz , Monocitos , Estrés Psicológico , Animales , Humanos , Ratones , Trastorno Depresivo Mayor/sangre , Trastorno Depresivo Mayor/enzimología , Trastorno Depresivo Mayor/genética , Trastorno Depresivo Mayor/metabolismo , Espacio Extracelular/metabolismo , Metaloproteinasa 8 de la Matriz/sangre , Metaloproteinasa 8 de la Matriz/deficiencia , Metaloproteinasa 8 de la Matriz/genética , Metaloproteinasa 8 de la Matriz/metabolismo , Ratones Endogámicos C57BL , Monocitos/química , Monocitos/inmunología , Monocitos/metabolismo , Núcleo Accumbens/metabolismo , Núcleo Accumbens/patología , Tejido Parenquimatoso/metabolismo , Análisis de Expresión Génica de una Sola Célula , Conducta Social , Aislamiento Social , Estrés Psicológico/sangre , Estrés Psicológico/genética , Estrés Psicológico/inmunología , Estrés Psicológico/metabolismo
2.
Genes Dev ; 36(3-4): 133-148, 2022 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-35086862

RESUMEN

The regeneration of peripheral nerves is guided by regeneration tracks formed through an interplay of many cell types, but the underlying signaling pathways remain unclear. Here, we demonstrate that macrophages are mobilized ahead of Schwann cells in the nerve bridge after transection injury to participate in building regeneration tracks. This requires the function of guidance receptor Plexin-B2, which is robustly up-regulated in infiltrating macrophages in injured nerves. Conditional deletion of Plexin-B2 in myeloid lineage resulted in not only macrophage misalignment but also matrix disarray and Schwann cell disorganization, leading to misguided axons and delayed functional recovery. Plexin-B2 is not required for macrophage recruitment or activation but enables macrophages to steer clear of colliding axons, in particular the growth cones at the tip of regenerating axons, leading to parallel alignment postcollision. Together, our studies unveil a novel reparative function of macrophages and the importance of Plexin-B2-mediated collision-dependent contact avoidance between macrophages and regenerating axons in forming regeneration tracks during peripheral nerve regeneration.


Asunto(s)
Regeneración Nerviosa , Nervios Periféricos , Axones/fisiología , Moléculas de Adhesión Celular , Macrófagos/metabolismo , Regeneración Nerviosa/genética , Proteínas del Tejido Nervioso/genética , Proteínas del Tejido Nervioso/metabolismo , Nervios Periféricos/metabolismo , Células de Schwann/metabolismo
3.
Brain Behav Immun ; 115: 169-178, 2024 01.
Artículo en Inglés | MEDLINE | ID: mdl-37838079

RESUMEN

Chronic stress is a major risk factor for Major Depressive Disorder (MDD), and it has been shown to impact the immune system and cause microglia activation in the medial prefrontal cortex (mPFC) involved in the pathogenesis of depression. The aim of this study is to further investigate cellular and molecular mechanisms underlying persistent depression behavior in sex specific manner, which is observed clinically. Here, we report that both male and female mice exhibited depression-like behavior following exposure to chronic stress. However, only female mice showed persistent depression-like behavior, which was associated with microglia activation in mPFC, characterized by distinctive alterations in the phenotype of microglia. Given these findings, to further investigate the underlying molecular mechanisms associated with persistent depression-like behavior and microglia activation in female mice, we used translating-ribosome affinity purification (TRAP). We find that Toll like receptor 4 (TLR4) signaling is casually related to persistent depression-like behavior in female mice. This is supported by the evidence that the fact that genetic ablation of TLR4 expression in microglia significantly reduced the persistent depression-like behavior to baseline levels in female mice. This study tentatively supports the hypothesis that the TLR4 signaling in microglia may be responsible for the sex differences in persistent depression-like behavior in female.


Asunto(s)
Depresión , Trastorno Depresivo Mayor , Receptor Toll-Like 4 , Animales , Femenino , Masculino , Ratones , Trastorno Depresivo Mayor/metabolismo , Microglía/metabolismo , Transducción de Señal , Estrés Psicológico/metabolismo , Receptor Toll-Like 4/metabolismo
4.
Nucleic Acids Res ; 47(5): 2263-2275, 2019 03 18.
Artículo en Inglés | MEDLINE | ID: mdl-30576549

RESUMEN

Recent studies have shown that tissue-specific transcriptomes contain multiple types of RNAs that are transcribed from intronic and intergenic sequences. The current study presents a tool for the discovery of transcribed, unannotated sequence elements from RNA-seq libraries. This RNA Element (RE) discovery algorithm (REDa) was applied to a spectrum of tissues and cells representing germline, embryonic, and somatic tissues and examined as a function of differentiation through the first set of cell divisions of human development. This highlighted extensive transcription throughout the genome, yielding previously unidentified human spermatogenic RNAs. Both exonic and novel X-chromosome REs were subject to robust meiotic sex chromosome inactivation, although an extensive de-repression occurred in the post-meiotic stages of spermatogenesis. Surprisingly, 2.4% of the 10,395 X chromosome exonic REs were present in mature sperm. Transcribed genomic repetitive sequences, including simple centromeric repeats, HERVE and HSAT1, were also shown to be associated with RE expression during spermatogenesis. These results suggest that pervasive intergenic repetitive sequence expression during human spermatogenesis may play a role in regulating chromatin dynamics. Repetitive REs switching repeat classes during differentiation upon fertilization and embryonic genome activation was evident.


Asunto(s)
Algoritmos , Blastocisto/metabolismo , Oocitos/metabolismo , ARN Mensajero/análisis , ARN Mensajero/genética , Secuencias Reguladoras de Ácido Ribonucleico/genética , Análisis de Secuencia de ARN , Espermatozoides/metabolismo , Blastocisto/citología , Diferenciación Celular , Línea Celular , Cromatina/genética , Cromatina/metabolismo , Cromosomas Humanos X/genética , Desarrollo Embrionario/genética , Exones/genética , Femenino , Fertilización , Regulación del Desarrollo de la Expresión Génica , Genómica , Humanos , Hígado/citología , Hígado/metabolismo , Masculino , Meiosis/genética , Oocitos/citología , Poli A/análisis , Poli A/genética , Poli A/aislamiento & purificación , ARN Mensajero/aislamiento & purificación , Secuencias Repetitivas de Ácidos Nucleicos , Espermatogénesis/genética , Espermatozoides/citología , Transcripción Genética , Inactivación del Cromosoma X
5.
J Neurosci ; 36(25): 6803-19, 2016 06 22.
Artículo en Inglés | MEDLINE | ID: mdl-27335410

RESUMEN

UNLABELLED: The PKR-like endoplasmic reticulum kinase (PERK) pathway of the unfolded protein response (UPR) is protective against toxic accumulations of misfolded proteins in the endoplasmic reticulum, but is thought to drive cell death via the transcription factor, CHOP. However, in many cell types, CHOP is an obligate step in the PERK pathway, which frames the conundrum of a prosurvival pathway that kills cells. Our laboratory and others have previously demonstrated the prosurvival activity of the PERK pathway in oligodendrocytes. In the current study, we constitutively overexpress CHOP in myelinating cells during development and into adulthood under normal or UPR conditions. We show that this transcription factor does not drive apoptosis. Indeed, we observe no detriment in mice at multiple levels from single cells to mouse behavior and life span. In light of these data and other studies, we reinterpret PERK pathway function in the context of a stochastic vulnerability model, which governs the likelihood that cells undergo cell death upon cessation of UPR protection and while attempting to restore homeostasis. SIGNIFICANCE STATEMENT: Herein, we tackle the biggest controversy in the UPR literature: the function of the transcription factor CHOP as a protective or a prodeath factor. This manuscript is timely in light of the 2014 Lasker award for the UPR. Our in vivo data show that CHOP is not a prodeath protein, and we demonstrate that myelinating glial cells function normally in the presence of high CHOP expression from development to adulthood. Further, we propose a simplified view of UPR-mediated cell death after CHOP induction. We anticipate our work may turn the tide of the dogmatic view of CHOP and cause a reinvestigation of its function in different cell types. Accordingly, we believe our work will be a watershed for the UPR field.


Asunto(s)
Fibras Nerviosas Mielínicas/metabolismo , Fenotipo , Estrés Fisiológico/fisiología , Factor de Transcripción CHOP/metabolismo , 2',3'-Nucleótido Cíclico 3'-Fosfodiesterasa/genética , 2',3'-Nucleótido Cíclico 3'-Fosfodiesterasa/metabolismo , Animales , Animales Recién Nacidos , Apoptosis/fisiología , Línea Celular Tumoral , Potenciales Evocados Auditivos del Tronco Encefálico/genética , Expresión Génica , Humanos , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Actividad Motora/genética , Fibras Nerviosas Mielínicas/patología , Fibras Nerviosas Mielínicas/ultraestructura , Proteínas del Tejido Nervioso/genética , Proteínas del Tejido Nervioso/metabolismo , Nervio Óptico/patología , Desempeño Psicomotor/fisiología , Transducción de Señal/genética , Médula Espinal/patología , Factor de Transcripción CHOP/genética
6.
Hum Reprod ; 32(11): 2159-2169, 2017 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-29024969

RESUMEN

STUDY QUESTION: Are preconception phthalate and phthalate replacements associated with sperm differentially methylated regions (DMRs) among men undergoing IVF? SUMMARY ANSWER: Ten phthalate metabolites were associated with 131 sperm DMRs that were enriched in genes related to growth and development, cell movement and cytoskeleton structure. WHAT IS KNOWN ALREADY: Several phthalate compounds and their metabolites are known endocrine disrupting compounds and are pervasive environmental contaminants. Rodent studies report that prenatal phthalate exposures induce sperm DMRs, but the influence of preconception phthalate exposure on sperm DNA methylation in humans is unknown. STUDY DESIGN, SIZE, DURATION: An exploratory cross-sectional study with 48 male participants from the Sperm Environmental Epigenetics and Development Study (SEEDS). PARTICIPANTS/MATERIALS, SETTING, METHODS: The first 48 couples provided a spot urine sample on the same day as semen sample procurement. Sperm DNA methylation was assessed with the HumanMethylation 450 K array. Seventeen urinary phthalate and 1,2-Cyclohexane dicarboxylic acid diisononyl ester (DINCH) metabolite concentrations were measured from spot urine samples. The A-clust algorithm was employed to identify co-regulated regions. DMRs associated with urinary metabolite concentrations were identified via linear models, corrected for false discovery rate (FDR). MAIN RESULTS AND ROLE OF CHANCE: Adjusting for age, BMI, and current smoking, 131 DMRs were associated with at least one urinary metabolite. Most sperm DMRs were associated with anti-androgenic metabolites, including mono(2-ethylhexyl) phthalate (MEHP, n = 83), mono(2-ethyl-5-oxohexyl) phthalate (MEOHP, n = 16), mono-n-butyl phthalate (MBP, n = 22) and cyclohexane-1,2-dicarboxylic acid-monocarboxy isooctyl (MCOCH, n = 7). The DMRs were enriched in lincRNAs as well as in regions near coding regions. Functional analyses of DMRs revealed enrichment of genes related to growth and development as well as cellular function and maintenance. Finally, 13% of sperm DMRs were inversely associated with high quality blastocyst-stage embryos after IVF. LIMITATIONS, REASONS FOR CAUTION: Our modest sample size only included 48 males and additional larger studies are necessary to confirm our observed results. Non-differential misclassification of exposure is also a concern given the single spot urine collection. WIDER IMPLICATIONS OF THE FINDINGS: To our knowledge, this is the first study to report that preconception urinary phthalate metabolite concentrations are associated with sperm DNA methylation in humans. These results suggest that paternal adult environmental conditions may influence epigenetic reprogramming during spermatogenesis, and in turn, influence early-life development. STUDY FUNDING/COMPETING INTEREST(S): This work was supported by grant K22-ES023085 from the National Institute of Environmental Health Sciences. The authors declare no competing interests.


Asunto(s)
Metilación de ADN/fisiología , Fertilización In Vitro , Infertilidad/metabolismo , Ácidos Ftálicos/orina , Espermatozoides/metabolismo , Adulto , Estudios Transversales , Femenino , Humanos , Infertilidad/orina , Masculino
7.
Curr Genet ; 61(2): 175-83, 2015 May.
Artículo en Inglés | MEDLINE | ID: mdl-25547512

RESUMEN

In Saccharomyces cerevisiae, intracellular phosphate levels are maintained by the PHO pathway, activation of which is assayed by increased phosphatase activity. The PHO pathway of Schizosaccharomyces pombe upregulates phosphatase activity (encoded by pho1 (+)) during low extracellular phosphate levels, but the underlying mechanism is poorly understood. We utilized an alternate repressor of pho1 (+) expression (adenine supplementation) along with epistasis analysis to develop a model of how S. pombe PHO pathway components interact. Analyzing Pho1 activity in S. pombe PHO pathway deletion mutants during adenine starvation, we observed most mutants with a phosphatase defect in phosphate starvation also had a defect in adenine starvation. Pho7, a transcription factor in the PHO pathway, is necessary for an adenine starvation-mediated increase in Pho1 activity. Comparing adenine starvation to phosphate starvation, there are differences in the degree to which individual mutants regulate the two responses. Through epistasis studies, we identified two positive regulatory arms and one repressive arm of the PHO pathway. PKA activation is a positive regulator of Pho1 activity under both environmental conditions and is critical for transducing adenine concentrations in the cell. The synthesis of IP7 also appears critical for the induction of Pho1 activity during adenine starvation, but IP7 is not critical during phosphate starvation, which differs from S. cerevisiae. Finally, Csk1 is critical for repression of pho1 (+) expression during phosphate starvation. We believe all of these regulatory arms converge to increase transcription of pho1 (+) and some of the regulation acts through pho7 (+).


Asunto(s)
Fosfatasa Ácida/genética , Epistasis Genética , Fosfatos/metabolismo , Proteínas Quinasas/genética , Proteínas de Schizosaccharomyces pombe/genética , Factores de Transcripción/genética , Adenina/metabolismo , Regulación Fúngica de la Expresión Génica , Proteínas Quinasas/metabolismo , Schizosaccharomyces , Proteínas de Schizosaccharomyces pombe/metabolismo , Eliminación de Secuencia , Transducción de Señal/genética
8.
Pain ; 2024 Jul 09.
Artículo en Inglés | MEDLINE | ID: mdl-38985454

RESUMEN

ABSTRACT: Preclinical and clinical work has demonstrated altered plasticity and activity in the nucleus accumbens (NAc) under chronic pain states, highlighting critical therapeutic avenues for the management of chronic pain conditions. In this study, we demonstrate that myocyte enhancer factor 2C (MEF2C), a master regulator of neuronal activity and plasticity, is repressed in NAc neurons after prolonged spared nerve injury (SNI). Viral-mediated overexpression of Mef2c in NAc neurons partially ameliorated sensory hypersensitivity and emotional behaviors in mice with SNI, while also altering transcriptional pathways associated with synaptic signaling. Mef2c overexpression also reversed SNI-induced potentiation of phasic dopamine release and neuronal hyperexcitability in the NAc. Transcriptional changes induced by Mef2c overexpression were different than those observed after desipramine treatment, suggesting a mechanism of action different from antidepressants. Overall, we show that interventions in MEF2C-regulated mechanisms in the NAc are sufficient to disrupt the maintenance of chronic pain states, providing potential new treatment avenues for neuropathic pain.

9.
bioRxiv ; 2024 Jun 28.
Artículo en Inglés | MEDLINE | ID: mdl-38979145

RESUMEN

Opioid use disorder (OUD) is a neuropsychological disease that has a devastating impact on public health. Substantial individual differences in vulnerability exist, the neurobiological substrates of which remain unclear. To address this question, we investigated genome-wide gene transcription (RNA-seq) and chromatin accessibility (ATAC-seq) in the medial prefrontal cortex (mPFC) of male and female rats exhibiting differential vulnerability in behavioral paradigms modeling different phases of OUD: Withdrawal-Induced Anhedonia (WIA), Demand, and Reinstatement. Ingenuity Pathway Analysis (IPA) of RNA-seq revealed greater changes in canonical pathways in Resilient (vs. Saline) rats in comparison to Vulnerable (vs. Saline) rats across 3 paradigms, suggesting brain adaptations that might contribute to resilience to OUD across its trajectory. Analyses of gene networks and upstream regulators implicated processes involved in oligodendrocyte maturation and myelination in WIA, neuroinflammation in Demand, and metabolism in Reinstatement. Motif analysis of ATAC-seq showed changes in chromatin accessibility to a small set of transcription factor (TF) binding sites as a function either of opioid exposure (i.e., morphine versus saline) generally or of individual vulnerability specifically. Some of these were shared across the 3 paradigms and others were unique to each. In conclusion, we have identified changes in biological pathways, TFs, and their binding motifs that vary with paradigm and OUD vulnerability. These findings point to the involvement of distinct transcriptional and epigenetic mechanisms in response to opioid exposure, vulnerability to OUD, and different stages of the disorder.

10.
bioRxiv ; 2024 Mar 14.
Artículo en Inglés | MEDLINE | ID: mdl-38559084

RESUMEN

Substance use disorder is characterized by a maladaptive imbalance wherein drug seeking persists despite negative consequences or drug unavailability. This imbalance correlates with neurobiological alterations some of which are amplified during forced abstinence, thereby compromising the capacity of extinction-based approaches to prevent relapse. Cocaine use disorder (CUD) exemplifies this phenomenon in which neurobiological modifications hijack brain reward regions such as the nucleus accumbens (NAc) to manifest craving and withdrawal-like symptoms. While increasing evidence links transcriptional changes in the NAc to specific phases of addiction, genome-wide changes in gene expression during withdrawal vs. extinction (WD/Ext) have not been examined in a context- and NAc-subregion-specific manner. Here, we used cocaine self-administration (SA) in rats combined with RNA-sequencing (RNA-seq) of NAc subregions (core and shell) to transcriptionally profile the impact of experiencing withdrawal in the home cage or in the previous drug context or experiencing extinction training. As expected, home-cage withdrawal maintained drug seeking in the previous drug context, whereas extinction training reduced it. By contrast, withdrawal involving repetitive exposure to the previous drug context increased drug-seeking behavior. Bioinformatic analyses of RNA-seq data revealed gene expression patterns, networks, motifs, and biological functions specific to these behavioral conditions and NAc subregions. Comparing transcriptomic analysis of the NAc of patients with CUD highlighted conserved gene signatures, especially with rats that were repetitively exposed to the previous drug context. Collectively, these behavioral and transcriptional correlates of several withdrawal-extinction settings reveal fundamental and translational information about potential molecular mechanisms to attenuate drug-associated memories.

11.
Neuron ; 2024 Jun 25.
Artículo en Inglés | MEDLINE | ID: mdl-38959894

RESUMEN

Histone post-translational modifications are critical for mediating persistent alterations in gene expression. By combining unbiased proteomics profiling and genome-wide approaches, we uncovered a role for mono-methylation of lysine 27 at histone H3 (H3K27me1) in the enduring effects of stress. Specifically, mice susceptible to early life stress (ELS) or chronic social defeat stress (CSDS) displayed increased H3K27me1 enrichment in the nucleus accumbens (NAc), a key brain-reward region. Stress-induced H3K27me1 accumulation occurred at genes that control neuronal excitability and was mediated by the VEFS domain of SUZ12, a core subunit of the polycomb repressive complex-2, which controls H3K27 methylation patterns. Viral VEFS expression changed the transcriptional profile of the NAc, led to social, emotional, and cognitive abnormalities, and altered excitability and synaptic transmission of NAc D1-medium spiny neurons. Together, we describe a novel function of H3K27me1 in the brain and demonstrate its role as a "chromatin scar" that mediates lifelong stress susceptibility.

12.
bioRxiv ; 2023 Nov 05.
Artículo en Inglés | MEDLINE | ID: mdl-37961567

RESUMEN

Injured neurons sense environmental cues to balance neural protection and axon regeneration, but the mechanisms are unclear. Here, we unveil aryl hydrocarbon receptor (AhR), a ligand-activated bHLH-PAS transcription factor, as molecular sensor and key regulator of acute stress response at the expense of axon regeneration. We demonstrate responsiveness of DRG sensory neurons to ligand-mediated AhR signaling, which functions to inhibit axon regeneration. Ahr deletion mimics the conditioning lesion in priming DRG to initiate axonogenesis gene programs; upon peripheral axotomy, Ahr ablation suppresses inflammation and stress signaling while augmenting pro-growth pathways. Moreover, comparative transcriptomics revealed signaling interactions between AhR and HIF-1α, two structurally related bHLH-PAS α units that share the dimerization partner Arnt/HIF-1ß. Functional assays showed that the growth advantage of AhR-deficient DRG neurons requires HIF-1α; but in the absence of Arnt, DRG neurons can still mount a regenerative response. We further unveil a link between bHLH-PAS transcription factors and DNA hydroxymethylation in response to peripheral axotomy, while neuronal single cell RNA-seq analysis revealed a link of the AhR regulon to RNA polymerase III regulation and integrated stress response (ISR). Altogether, AhR activation favors stress coping and inflammation at the expense of axon regeneration; targeting AhR can enhance nerve repair.

13.
Behav Brain Res ; 439: 114162, 2023 02 15.
Artículo en Inglés | MEDLINE | ID: mdl-36257560

RESUMEN

Although most people are subjected to traumatic stress at least once in their lifetime, only a subset develop long-lasting, stress-triggered neuropsychiatric disorders, such as PTSD. Here we examined different transcriptome profiles within the locus coeruleus (LC) and nucleus accumbens (NAc) that may contribute to stress susceptibility. Sprague Dawley male rats were exposed to the single prolonged stress (SPS) model for PTSD. Two weeks later they were tested for their anxiety/avoidance behavior on the Elevated Plus Maze (EPM) and were divided into high and low anxiety-like subgroups. RNA (n = 5 per group) was subsequently isolated from LC and NAc and subjected to RNAseq. Transcriptome analysis was used to identify differentially-expressed genes (DEGs) which differed by at least 50 % with significance of 0.01. The LC had more than six times the number of DEGs than the NAc. Only one DEG was regulated similarly in both locations. Many of the DEGs in the LC were associated with morphological changes, including regulation of actin cytoskeleton, growth factor activity, regulation of cell size, brain development and memory, with KEGG pathway of regulation of actin cytoskeleton. The DEGs in the NAc were primarily related to DNA repair and synthesis, and differential regulation of cytokine production. The analysis identified MTPN (myotrophin) and NR3C1 (glucocorticoid receptor) as important upstream regulators of stress susceptibility in the LC. Overall the study provides new insight into molecular pathways in the LC and NAc that are associated with anxiety-like behavior triggered by stress susceptibility or resilience.


Asunto(s)
Núcleo Accumbens , Trastornos por Estrés Postraumático , Ratas , Animales , Masculino , Ratas Sprague-Dawley , Núcleo Accumbens/metabolismo , Transcriptoma , Locus Coeruleus/metabolismo , Ansiedad , Trastornos por Estrés Postraumático/metabolismo , Estrés Psicológico
14.
Neuropsychopharmacology ; 48(11): 1680-1689, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-37474762

RESUMEN

Tricyclic antidepressants (TCAs), such as desipramine (DMI), are effective at managing neuropathic pain symptoms but often take several weeks to become effective and also lead to considerable side effects. Tianeptine (TIAN) is an atypical antidepressant that activates the mu-opioid receptor but does not produce analgesic tolerance or withdrawal in mice, nor euphoria in humans, at clinically-relevant doses. Here, we evaluate the efficacy of TIAN at persistently alleviating mechanical allodynia in the spared nerve injury (SNI) model of neuropathic pain, even well after drug clearance. After finding an accelerated onset of antiallodynic action compared to DMI, we used genetically modified mice to gain insight into RGS protein-associated pathways that modulate the efficacy of TIAN relative to DMI in models of neuropathic pain. Because we observed similar behavioral responses to both TIAN and DMI treatment in RGS4, RGSz1, and RGS9 knockout mice, we performed RNA sequencing on the NAc of TIAN- and DMI-treated mice after prolonged SNI to further clarify potential mechanisms underlying TIANs faster therapeutic actions. Our bioinformatic analysis revealed distinct transcriptomic signatures between the two drugs, with TIAN more directly reversing SNI-induced differentially expressed genes, and further predicted several upstream regulators that may be implicated in onset of action. This new understanding of the molecular pathways underlying TIAN action may enable the development of novel and more efficacious pharmacological approaches for the management of neuropathic pain.


Asunto(s)
Neuralgia , Humanos , Ratones , Animales , Neuralgia/tratamiento farmacológico , Antidepresivos/uso terapéutico , Hiperalgesia/tratamiento farmacológico , Antidepresivos Tricíclicos/farmacología , Antidepresivos Tricíclicos/uso terapéutico , Modelos Animales de Enfermedad
15.
Nat Commun ; 14(1): 5165, 2023 08 24.
Artículo en Inglés | MEDLINE | ID: mdl-37620297

RESUMEN

Axon regeneration of dorsal root ganglia (DRG) neurons after peripheral axotomy involves reconfiguration of gene regulatory circuits to establish regenerative gene programs. However, the underlying mechanisms remain unclear. Here, through an unbiased survey, we show that the binding motif of Bmal1, a central transcription factor of the circadian clock, is enriched in differentially hydroxymethylated regions (DhMRs) of mouse DRG after peripheral lesion. By applying conditional deletion of Bmal1 in neurons, in vitro and in vivo neurite outgrowth assays, as well as transcriptomic profiling, we demonstrate that Bmal1 inhibits axon regeneration, in part through a functional link with the epigenetic factor Tet3. Mechanistically, we reveal that Bmal1 acts as a gatekeeper of neuroepigenetic responses to axonal injury by limiting Tet3 expression and restricting 5hmC modifications. Bmal1-regulated genes not only concern axon growth, but also stress responses and energy homeostasis. Furthermore, we uncover an epigenetic rhythm of diurnal oscillation of Tet3 and 5hmC levels in DRG neurons, corresponding to time-of-day effect on axon growth potential. Collectively, our studies demonstrate that targeting Bmal1 enhances axon regeneration.


Asunto(s)
Relojes Circadianos , Dioxigenasas , Epigénesis Genética , Regeneración Nerviosa , Células Receptoras Sensoriales , Animales , Ratones , Axones , Relojes Circadianos/genética , Regeneración Nerviosa/genética
16.
Neuron ; 111(9): 1453-1467.e7, 2023 05 03.
Artículo en Inglés | MEDLINE | ID: mdl-36889314

RESUMEN

The complex nature of the transcriptional networks underlying addictive behaviors suggests intricate cooperation between diverse gene regulation mechanisms that go beyond canonical activity-dependent pathways. Here, we implicate in this process a nuclear receptor transcription factor, retinoid X receptor alpha (RXRα), which we initially identified bioinformatically as associated with addiction-like behaviors. In the nucleus accumbens (NAc) of male and female mice, we show that although its own expression remains unaltered after cocaine exposure, RXRα controls plasticity- and addiction-relevant transcriptional programs in both dopamine receptor D1- and D2-expressing medium spiny neurons, which in turn modulate intrinsic excitability and synaptic activity of these NAc cell types. Behaviorally, bidirectional viral and pharmacological manipulation of RXRα regulates drug reward sensitivity in both non-operant and operant paradigms. Together, this study demonstrates a key role for NAc RXRα in promoting drug addiction and paves the way for future studies of rexinoid signaling in psychiatric disease states.


Asunto(s)
Cocaína , Trastornos Mentales , Ratones , Masculino , Femenino , Animales , Núcleo Accumbens/metabolismo , Receptor alfa X Retinoide/genética , Receptor alfa X Retinoide/metabolismo , Neuronas/fisiología , Cocaína/farmacología , Receptores de Dopamina D1/metabolismo , Trastornos Mentales/metabolismo , Recompensa , Ratones Endogámicos C57BL
17.
Biol Psychiatry ; 94(5): 367-377, 2023 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-36906500

RESUMEN

BACKGROUND: The ability of neurons to respond to external stimuli involves adaptations of gene expression. Induction of the transcription factor ΔFOSB in the nucleus accumbens, a key brain reward region, is important for the development of drug addiction. However, a comprehensive map of ΔFOSB's gene targets has not yet been generated. METHODS: We used CUT&RUN (cleavage under targets and release using nuclease) to map the genome-wide changes in ΔFOSB binding in the 2 main types of nucleus accumbens neurons-D1 or D2 medium spiny neurons-after chronic cocaine exposure. To annotate genomic regions of ΔFOSB binding sites, we also examined the distributions of several histone modifications. Resulting datasets were leveraged for multiple bioinformatic analyses. RESULTS: The majority of ΔFOSB peaks occur outside promoter regions, including intergenic regions, and are surrounded by epigenetic marks indicative of active enhancers. BRG1, the core subunit of the SWI/SNF chromatin remodeling complex, overlaps with ΔFOSB peaks, a finding consistent with earlier studies of ΔFOSB's interacting proteins. Chronic cocaine use induces broad changes in ΔFOSB binding in both D1 and D2 nucleus accumbens medium spiny neurons of male and female mice. In addition, in silico analyses predict that ΔFOSB cooperatively regulates gene expression with homeobox and T-box transcription factors. CONCLUSIONS: These novel findings uncover key elements of ΔFOSB's molecular mechanisms in transcriptional regulation at baseline and in response to chronic cocaine exposure. Further characterization of ΔFOSB's collaborative transcriptional and chromatin partners specifically in D1 and D2 medium spiny neurons will reveal a broader picture of the function of ΔFOSB and the molecular basis of drug addiction.


Asunto(s)
Trastornos Relacionados con Cocaína , Cocaína , Ratones , Masculino , Femenino , Animales , Cocaína/farmacología , Cocaína/metabolismo , Ratones Transgénicos , Proteínas Proto-Oncogénicas c-fos/genética , Proteínas Proto-Oncogénicas c-fos/metabolismo , Núcleo Accumbens/metabolismo , Ratones Endogámicos C57BL
18.
Front Behav Neurosci ; 17: 1202099, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37424750

RESUMEN

Introduction: Infants exposed to opioids in utero are at high risk of exhibiting Neonatal Opioid Withdrawal Syndrome (NOWS), a combination of somatic withdrawal symptoms including high pitched crying, sleeplessness, irritability, gastrointestinal distress, and in the worst cases, seizures. The heterogeneity of in utero opioid exposure, particularly exposure to polypharmacy, makes it difficult to investigate the underlying molecular mechanisms that could inform early diagnosis and treatment of NOWS, and challenging to investigate consequences later in life. Methods: To address these issues, we developed a mouse model of NOWS that includes gestational and post-natal morphine exposure that encompasses the developmental equivalent of all three human trimesters and assessed both behavior and transcriptome alterations. Results: Opioid exposure throughout all three human equivalent trimesters delayed developmental milestones and produced acute withdrawal phenotypes in mice reminiscent of those observed in infants. We also uncovered different patterns of gene expression depending on the duration and timing of opioid exposure (3-trimesters, in utero only, or the last trimester equivalent only). Opioid exposure and subsequent withdrawal affected social behavior and sleep in adulthood in a sex-dependent manner but did not affect adult behaviors related to anxiety, depression, or opioid response. Discussion: Despite marked withdrawal and delays in development, long-term deficits in behaviors typically associated with substance use disorders were modest. Remarkably, transcriptomic analysis revealed an enrichment for genes with altered expression in published datasets for Autism Spectrum Disorders, which correlate well with the deficits in social affiliation seen in our model. The number of differentially expressed genes between the NOWS and saline groups varied markedly based on exposure protocol and sex, but common pathways included synapse development, the GABAergic and myelin systems, and mitochondrial function.

19.
bioRxiv ; 2023 Sep 19.
Artículo en Inglés | MEDLINE | ID: mdl-37781621

RESUMEN

Substance use disorders (SUDs) induce widespread molecular dysregulation in the nucleus accumbens (NAc), a brain region pivotal for coordinating motivation and reward. These molecular changes are thought to support lasting neural and behavioral disturbances that promote drug-seeking in addiction. However, different drug classes exert unique influences on neural circuits, cell types, physiology, and gene expression despite the overlapping symptomatology of SUDs. To better understand common and divergent molecular mechanisms governing SUD pathology, our goal was to survey cell-type-specific restructuring of the NAc transcriptional landscape in after psychostimulant or opioid exposure. We combined fluorescence-activated nuclei sorting and RNA sequencing to profile NAc D1 and D2 medium spiny neurons (MSNs) across cocaine and morphine exposure paradigms, including initial exposure, prolonged withdrawal after repeated exposure, and re-exposure post-withdrawal. Our analyses reveal that D1 MSNs display many convergent transcriptional responses across drug classes during exposure, whereas D2 MSNs manifest mostly divergent responses between cocaine and morphine, with morphine causing more adaptations in this cell type. Utilizing multiscale embedded gene co-expression network analysis (MEGENA), we discerned transcriptional regulatory networks subserving biological functions shared between cocaine and morphine. We observed largely integrative engagement of overlapping gene networks across drug classes in D1 MSNs, but opposite regulation of key D2 networks, highlighting potential therapeutic gene network targets within MSNs. These studies establish a landmark, cell-type-specific atlas of transcriptional regulation induced by cocaine and by morphine that can serve as a foundation for future studies towards mechanistic understanding of SUDs. Our findings, and future work leveraging this dataset, will pave the way for the development of targeted therapeutic interventions, addressing the urgent need for more effective treatments for cocaine use disorder and enhancing the existing strategies for opioid use disorder.

20.
Elife ; 122023 07 07.
Artículo en Inglés | MEDLINE | ID: mdl-37417740

RESUMEN

Infection with the etiological agent of COVID-19, SARS-CoV-2, appears capable of impacting cognition in some patients with post-acute sequelae of SARS-CoV-2 (PASC). To evaluate neuropathophysiological consequences of SARS-CoV-2 infection, we examine transcriptional and cellular signatures in the Brodmann area 9 (BA9) of the frontal cortex and the hippocampal formation (HF) in SARS-CoV-2, Alzheimer's disease (AD), and SARS-CoV-2-infected AD individuals compared to age- and gender-matched neurological cases. Here, we show similar alterations of neuroinflammation and blood-brain barrier integrity in SARS-CoV-2, AD, and SARS-CoV-2-infected AD individuals. Distribution of microglial changes reflected by the increase in Iba-1 reveals nodular morphological alterations in SARS-CoV-2-infected AD individuals. Similarly, HIF-1α is significantly upregulated in the context of SARS-CoV-2 infection in the same brain regions regardless of AD status. The finding may help in informing decision-making regarding therapeutic treatments in patients with neuro-PASC, especially those at increased risk of developing AD.


Asunto(s)
Enfermedad de Alzheimer , COVID-19 , Humanos , SARS-CoV-2 , Barrera Hematoencefálica , Cognición , Progresión de la Enfermedad
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA