Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 77
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Molecules ; 28(3)2023 Jan 26.
Artículo en Inglés | MEDLINE | ID: mdl-36770879

RESUMEN

The increasing number of contaminants in the environment has pushed water monitoring programs to find out the most hazardous known and unknown chemicals in the environment. Sample treatment-simplification methods and non-target screening approaches can help researchers to not overlook potential chemicals present in complex aqueous samples. In this work, an effect-directed analysis (EDA) protocol using the sea urchin embryo test (SET) as a toxicological in vivo bioassay was used as simplified strategy to identify potential unknown chemicals present in a very complex aqueous matrix such as hospital effluent. The SET bioassay was used for the first time here to evaluate potential toxic fractions in hospital effluent, which were obtained after a two-step fractionation using C18 and aminopropyl chromatographic semi-preparative columns. The unknown compounds present in the toxic fractions were identified by means of liquid chromatography coupled to a Q Exactive Orbitrap high-resolution mass spectrometer (LC-HRMS) and using a suspect analysis approach. The results were complemented by gas chromatography-mass spectrometry analysis (GC-MS) in order to identify the widest range of chemical compounds present in the sample and the toxic fractions. Using EDA as sample treatment simplification method, the number of unknown chemicals (>446 features) detected in the raw sample was narrowed down to 94 potential toxic candidates identified in the significantly toxic fractions. Among them, the presence of 25 compounds was confirmed with available chemical standards including 14 pharmaceuticals, a personal care product, six pesticides and four industrial products. The observations found in this work emphasize the difficulties in identifying potential toxicity drivers in complex water samples, as in the case of hospital wastewater.


Asunto(s)
Aguas Residuales , Contaminantes Químicos del Agua , Contaminantes Químicos del Agua/toxicidad , Contaminantes Químicos del Agua/análisis , Espectrometría de Masas/métodos , Agua/análisis , Hospitales , Monitoreo del Ambiente/métodos
2.
Addict Biol ; 27(6): e13233, 2022 11.
Artículo en Inglés | MEDLINE | ID: mdl-36301212

RESUMEN

Cannabis use disorder is frequent in schizophrenia patients, and it is associated with an earlier age of onset and poor schizophrenia prognosis. Serotonin 2A receptors (5-HT2AR) have been involved in psychosis and, like Akt kinase, are known to be modulated by THC. Likewise, endocannabinoid system dysregulation has been suggested in schizophrenia. The presence of these molecules in blood makes them interesting targets, as they can be evaluated in patients by a minimally invasive technique. The aim of the present study was to evaluate 5-HT2AR protein expression and the Akt functional status in platelet homogenates of subjects diagnosed with schizophrenia, cannabis use disorder, or both conditions, compared with age- and sex-matched control subjects. Additionally, endocannabinoids and pro-inflammatory interleukin-6 (IL-6) levels were also measured in the plasma of these subjects. Results showed that both platelet 5-HT2AR and the active phospho (Ser473)Akt protein expression were significantly increased in schizophrenia subjects, whereas patients with a dual diagnosis of schizophrenia and cannabis use disorder did not show significant changes. Similarly, plasma concentrations of anandamide and other lipid mediators such as PEA and DEA, as well as the pro-inflammatory IL-6, were significantly increased in schizophrenia, but not in dual subjects. Results demonstrate that schizophrenia subjects show different circulating markers pattern depending on the associated diagnosis of cannabis use disorder, supporting the hypothesis that there could be different underlying mechanisms that may explain clinical differences among these groups. Moreover, they provide the first preliminary evidence of peripherally measurable molecules of interest for bigger prospective studies in these subpopulations.


Asunto(s)
Cannabis , Abuso de Marihuana , Esquizofrenia , Humanos , Esquizofrenia/metabolismo , Interleucina-6 , Estudios Prospectivos , Proteínas Proto-Oncogénicas c-akt , Agonistas de Receptores de Cannabinoides , Biomarcadores
3.
Ecotoxicol Environ Saf ; 241: 113728, 2022 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-35689888

RESUMEN

Since countless xenobiotic compounds are being found in the environment, ecotoxicology faces an astounding challenge in identifying toxicants. The combination of high-throughput in vivo/in vitro bioassays with high-resolution chemical analysis is an effective way to elucidate the cause-effect relationship. However, these combined strategies imply an enormous workload that can hinder their implementation in routine analysis. The purpose of this study was to develop a new high throughput screening method that could be used as a predictive expert system that automatically quantifies the size increase and malformation of the larvae and, thus, eases the application of the sea urchin embryo test in complex toxicant identification pipelines such as effect-directed analysis. For this task, a training set of 242 images was used to calibrate the size-increase and malformation level of the larvae. Two classification models based on partial least squares discriminant analysis (PLS-DA) were built and compared. Moreover, Hierarchical PLS-DA shows a high proficiency in classifying the larvae, achieving a prediction accuracy of 84 % in validation. The scripts built along the work were compiled in a user-friendly standalone app (SETApp) freely accessible at https://github.com/UPV-EHU-IBeA/SETApp. The SETApp was tested in a real case scenario to fulfill the tedious requirements of a WWTP effect-directed analysis.


Asunto(s)
Aplicaciones Móviles , Animales , Análisis Discriminante , Análisis de los Mínimos Cuadrados , Aprendizaje Automático , Erizos de Mar
4.
Environ Sci Technol ; 54(14): 8890-8899, 2020 07 21.
Artículo en Inglés | MEDLINE | ID: mdl-32525664

RESUMEN

Sea urchin embryo assay was used to assess general toxicity at four wastewater treatment plant effluents of Biscay (Gorliz, Mungia, Gernika, and Galindo), and within the tested range, all the extracts showed embryo growth inhibition and skeleton malformation activities with EC50 values, in relative enrichment factor units, between 1.1-16.8 and 1.1-8.8, respectively. To identify the causative compounds, effect-directed analysis was successfully applied for the first time using a sea urchin embryo test to the secondary treatment of the Galindo effluent. To this end, two subsequent fractionation steps were performed using C18 (21 fractions) and aminopropyl columns (15 fractions). By this fractionation, the number of features detected by LC-HRMS in the raw sample was drastically reduced from 1500 to 9, and among them, two pesticides (mexacarbate, 17 ng/L, and fenpropidin, 23 ng/L), two antidepressants (amitriptyline, 304 ng/L, and paroxetine, 26 ng/L), and two anthelmintic agents (mebendazole, 65 ng/L, and albendazole, 48 ng/L) could be identified in the two toxic fractions. The artificial mixture of the identified six compounds could explain 79% of the observed effect, with albendazole and paroxetine as the predominant contributors (49% and 49%, respectively) affecting the sea urchin embryogenesis activity.


Asunto(s)
Aguas Residuales , Contaminantes Químicos del Agua , Animales , Bioensayo , Embrión no Mamífero , Desarrollo Embrionario , Erizos de Mar , Contaminantes Químicos del Agua/análisis , Contaminantes Químicos del Agua/toxicidad
5.
Anal Chem ; 91(9): 5739-5746, 2019 05 07.
Artículo en Inglés | MEDLINE | ID: mdl-30915838

RESUMEN

An automatic mesofluidic system combining dynamic oral bioaccessibility with lab-on-valve (LOV)-based sorptive microextraction is herein proposed for the first time for exploring the kinetics of leaching of incurred rather than spiked organic emerging contaminants (viz., methyl paraben, butyl paraben, diclofenac, and triclosan) from exposed mussels on the basis of the Versantvoort's fed-state physiological extraction test. Our method capitalizes on programmable flow analysis, in which gastrointestinal extracts are obtained online by pumping a simulated biorelevant gastrointestinal fluid across a large-bore column (maintained at 37.0 ± 2.0 °C) loaded with 250 mg of freeze-dried and powdered mussel onto a polyvinyldiene difluoride filter membrane. The physiologically relevant extracts are then cleaned up, and the analytes are preconcentrated onto a dedicated reversed-phase solid-phase extraction (Oasis PRIME-HLB) microcolumn that is captured into the channels of an LOV mesofluidic platform. The aim behind this is to obtain analyte-laden eluates with ACN/MeOH (90:10, v/v) in unsupervised mode for direct injection into LC-MS. The LOV minicolumn (≤25 mg) is automatically disposed of and renewed for every individual fraction on account of the strong retention of (phospho)lipids by the copolymeric sorbent. The proposed dynamic bioaccessibility test features a significant shortening of the extraction time against the batch method (28 vs 240 min) while avoiding overestimation of potentially bioavailable fractions. The trueness of the online gastrointestinal extraction method was confirmed using mass-balance validation following ultrasonic-assisted solid-liquid extraction of the original mussel sample and the residual (nonbioaccessible) fraction of emerging contaminants.


Asunto(s)
Líquidos Corporales/metabolismo , Análisis de Inyección de Flujo/instrumentación , Tracto Gastrointestinal/metabolismo , Compuestos Orgánicos/análisis , Extracción en Fase Sólida/métodos , Contaminantes Químicos del Agua/análisis , Animales , Automatización , Bivalvos , Cromatografía Líquida de Alta Presión , Análisis de Inyección de Flujo/métodos , Compuestos Orgánicos/aislamiento & purificación , Polímeros/química , Contaminantes Químicos del Agua/aislamiento & purificación
6.
Anal Bioanal Chem ; 411(2): 493-506, 2019 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-30478518

RESUMEN

In this work, the full optimisation and validation procedure to analyse a wide set of emerging organic contaminants in biotissues (mussel and fish muscle, liver, gills and brain) and biofluids (fish plasma and bile) is described. The target families include artificial sweeteners, industrial products, hormones, pharmaceutical and personal care products, pesticides and phytoestrogens. Different clean-up strategies (hydrophilic-lipophilic-balanced (HLB) solid-phase extraction, Florisil solid-phase extraction and liquid-liquid extraction followed by HLB solid-phase extraction and microextraction based on polyethersulfone polymer) were evaluated for the clean-up of focused ultrasonic solid-liquid extraction (FUSLE) extracts before the analysis by liquid chromatography-triple quadrupole tandem mass spectrometry (LC-QqQ-MS/MS). The methods afforded satisfactory apparent recovery values (71-126%) using isotopically labelled analytes and matrix-matched calibration approach, regardless of the matrix. Method detection limits in the range of 4-48 ng/g and 0.3-111 ng/L were obtained for biotissues and biofluids, respectively. The developed method was applied to determine the uptake and tissue distribution in juvenile gilt-head bream (Sparus aurata) during 7 days in seawater, and unexpectedly, perfluoro-1-butanesulfonate tended to accumulate in liver and, to a lesser extent, in muscle and gills. Furthermore, real mussel samples collected in the Basque coast were also analysed and the presence of the highly consumed valsartan (7 ng/g) and telmisartan (6.8 ng/g) compounds in bivalves is reported for the first time here. Graphical abstract ᅟ.


Asunto(s)
Bivalvos , Líquidos Corporales/química , Cromatografía Liquida , Peces , Espectrometría de Masas en Tándem , Contaminantes Químicos del Agua/química , Animales , Compuestos Orgánicos/química , Dorada , Agua de Mar , Contaminantes Químicos del Agua/farmacocinética
7.
Anal Bioanal Chem ; 410(2): 615-632, 2018 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-29214535

RESUMEN

A new procedure using polyethersulfone (PES) microextraction followed by liquid chromatography-tandem mass spectrometry (LC-MS/MS) analysis was developed in this work for the simultaneous determination of 41 multiclass priority and emerging organic pollutants including herbicides, hormones, personal care products, and pharmaceuticals, among others, in seawater, wastewater treatment plant (WWTP) effluents, and estuary samples. The optimization of the analysis included two different chromatographic columns and different variables (polarity, fragmentor voltage, collision energy, and collision cell accelerator) of the mass spectrometer. In the case of PES extraction, ion strength of the water, pH, addition of EDTA, and the amount of the polymeric material were thoroughly investigated. The developed procedure was compared with a previously validated one based on a standard solid-phase extraction (SPE). In contrast to the SPE protocol, the PES method allowed a cost-efficient extraction of complex aqueous samples with lower matrix effect from 120 mL of water sample. Satisfactory and comparable apparent recovery values (80-119 and 70-131%) and method quantification limits (MQLs, 0.4-26 and 0.2-23 ng/L) were obtained for PES and SPE procedures, respectively, regardless of the matrix. Repeatability values lower than 27% were obtained. Finally, the developed methods were applied to the analysis of real samples from the Basque Country and irbesartan, valsartan, acesulfame, and sucralose were the analytes most often detected at the highest concentrations (51-1096 ng/L). Graphical abstract Forty-one multiclass pollutant determination in environmental waters by means of PES/SPE-LC-MS/MS.


Asunto(s)
Herbicidas/análisis , Hormonas/análisis , Preparaciones Farmacéuticas/análisis , Polímeros/química , Extracción en Fase Sólida/métodos , Sulfonas/química , Espectrometría de Masas en Tándem/métodos , Contaminantes Químicos del Agua/análisis , Cromatografía Liquida/métodos , Estuarios , Límite de Detección , Agua de Mar/análisis , Aguas Residuales/análisis
8.
Anal Bioanal Chem ; 409(27): 6359-6370, 2017 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-28852783

RESUMEN

This work describes the optimization, validation, and application in real samples of accurate and precise analytical methods to determine ten fluoroquinolones (FQs) (norfloxacin, enoxacin, pefloxacin, ofloxacin, levofloxacin, ciprofloxacin, danofloxacin, lomefloxacin, enrofloxacin, and sparfloxacin) in different environmental matrices, such as water (estuarine, seawater, and wastewater treatment plant effluent), fish tissues (muscle and liver), and fish biofluids (plasma and bile). The analysis step performed by liquid chromatography-tandem mass spectrometry (LC-MS/MS) was fully optimized to improve the separation and detection steps. The extraction of analytes from fish tissues was accomplished using focused ultrasound solid-liquid extraction using methanol/acetic acid (95:5 v/v) as extractant. The preconcentration and clean-up steps were optimized in terms of extraction efficiency and cleanliness and the best strategy for each matrix was selected: (i) Oasis HLB for seawater and muscle, (ii) liquid-liquid extraction combined with Oasis HLB for the lipid-rich liver, (iii) the combination of Evolute-WAX and Oasis HLB for estuarine water and wastewater treatment plant effluent, and (iv) molecular imprinted polymers for biofluids. The methods afforded satisfactory apparent recoveries (80-126%) and repeatability (RSD < 15%), except for sparfloxacin, which showed a lack of correction with the available isotopically labeled surrogates ([2H8]-ciprofloxacin and [2H5]-enrofloxacin). Ciprofloxacin, norfloxacin, and ofloxacin were detected in both water and fish liver samples from the Biscay Coast at concentrations up to 278 ng/L and 4 ng/g, respectively. To the best of our knowledge, this work is one of the few analyzing up to ten FQs and in so many fish tissues and biofluids. Graphical abstract Determination of fluoroquinolones in different environmental matrices, such as water (estuarine, seawater, and wastewater treatment plant effluent), fish tissues (muscle and liver), and fish biofluids (plasma and bile).


Asunto(s)
Cromatografía Liquida/métodos , Monitoreo del Ambiente/métodos , Peces , Fluoroquinolonas/análisis , Espectrometría de Masas en Tándem/métodos , Contaminantes Químicos del Agua/análisis , Animales , Bilis/química , Estuarios , Peces/sangre , Peces/metabolismo , Límite de Detección , Agua de Mar/análisis , Extracción en Fase Sólida/métodos , Sonicación/métodos , Aguas Residuales/análisis
9.
Anal Bioanal Chem ; 408(21): 5689-5700, 2016 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-27342793

RESUMEN

This study describes a new method for the simultaneous extraction of several endocrine disrupting compounds, including alkylphenols (APs), estrogen, bisphenol-A (BPA) and one phthalate metabolite (mono-2-ethylhexyl ester, MEHP) in fish liver, brain, and muscle. Parameters affecting the extraction (extraction solvent and temperature) and the clean-up (dispersive phase nature and amount) steps were evaluated. The extraction was performed by means of focused ultrasound solid-liquid extraction (FUSLE) using 10 mL of n-hexane:acetone (50:50, v/v) for 5 min at ~0 °C, and the clean-up was done by means of dispersive solid phase extraction (dSPE) using 100 mg of ENVI-CARB and 100 mg of MgSO4 for the cleaning of brain and muscle extracts together with 100 mg of PSA in the case of liver extracts. Good apparent recoveries were obtained in the case of liver (62-132 %), brain (66-120 %), and muscle (74-129 %), relative standard deviation (RSD%) was always below 26 %, and the method detection limits (MDLs) were at low ng/g level. The developed method was applied to fish captured in Urdaibai estuary (Bay of Biscay) in December 2015, and the concentrations obtained were in the range MDL-1115 ng/g in brain, MDL-962 ng/g in muscle, and MDL-672 ng/g in liver. In general, the highest concentrations were measured in liver, followed by brain and muscle. In addition, diethylstilbestrol was only detected in fish brain. Graphical Abstract MS method scheme for the/MS method scheme for the determination of EDCs in fish liver, brain and muscle.


Asunto(s)
Disruptores Endocrinos/análisis , Peces/metabolismo , Extracción en Fase Sólida/métodos , Contaminantes Químicos del Agua/análisis , Animales , Compuestos de Bencidrilo/análisis , Encéfalo/metabolismo , Estrógenos/análisis , Límite de Detección , Hígado/metabolismo , Músculos/metabolismo , Fenoles/análisis , Ácidos Ftálicos/análisis , Sonicación/métodos , Espectrometría de Masas en Tándem/métodos
10.
Anal Bioanal Chem ; 408(4): 1205-16, 2016 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-26677016

RESUMEN

This work describes the optimization, validation, and application in real samples of accurate and precise analytical methods to determine tricyclic antidepressants (TCAs), including amitriptyline, nortriptyline, imipramine, and clomipramine in different environmental matrices, such as water (estuary, seawater, and wastewater treatment plant effluent) and biota (fish muscle, fish liver, and mussels), which would lead to supplement the scarce information on the presence of TCAs in aquatic organisms. The analysis step performed by liquid chromatography-tandem mass spectrometry (LC-MS/MS) was fully optimized to improve the sensitivity of the separation and detection steps. The extraction of solid samples was accomplished using focused ultrasonic solid-liquid extraction (FUSLE), which required a low amount of sample (0.5 g), solvent (7 mL acetonitrile/H2O, 95:5 v/v) and short extraction time (30 s). In the optimisation of the clean-up step, mixed mode solid-phase extraction (SPE) using a strong cation exchanger rendered clean extracts and the best results in terms of extraction efficiency and matrix effect. The same SPE mode was also used for the extraction and pre-concentration of TCAs from environmental water matrices. The methods afforded satisfactory apparent recovery values (86-122%) and repeatability (RSD < 5%), regardless of the matrix. Finally, the developed methods were applied to the analysis of real samples from the Biscay Coast, where TCAs were detected in both water and biota samples up to 25.9 ng/L and 1.8 ng/g, respectively. Up to our knowledge, this is the first work using FUSLE for the determination of TCAs and one of the few analyzing TCAs in biota samples.


Asunto(s)
Antidepresivos Tricíclicos/análisis , Cromatografía Liquida/métodos , Espectrometría de Masas en Tándem/métodos , Contaminantes Químicos del Agua/análisis , Animales , Estuarios , Peces , Contaminación de Alimentos/análisis , Límite de Detección , Hígado/química , Músculo Esquelético/química , Mytilus/química , Agua de Mar/análisis , Extracción en Fase Sólida/métodos , España , Espectrometría de Masa por Ionización de Electrospray/métodos , Aguas Residuales/análisis
11.
Anal Bioanal Chem ; 408(12): 3165-75, 2016 May.
Artículo en Inglés | MEDLINE | ID: mdl-26892638

RESUMEN

The uptake calibration of more than 12 non-polar organic contaminants by 3 polymeric materials is shown: bare polydimetilsiloxane (PDMS, stir-bars), polyethersulfone tubes and membranes (PES) and polyoxymethylene membranes (POM), both in their free form and membrane-enclosed sorptive coating (MESCO). The calibration process was carried out exposing the samplers to a continuous flow of contaminated water at 100 ng mL(-1) for up to 28 days, and, consequently, the sampling rates (Rs, mL day(-1)) of several organic microcontaminants were provided for the first time. In situ Rs values were also determined disposing the samplers in the effluent of a wastewater treatment plant. Finally, these passive samplers were applied to monitor the effluents of two wastewater treatment plants. This application lead to the confirmation of the presence of galaxolide, tonalide and 4-tert-octylphenol at high ng mL(-1) levels, as well as the identification of compounds like some phthalates and alkylphenols at levels below the detection limits for active sampling methods.

12.
J Nat Prod ; 79(2): 324-31, 2016 Feb 26.
Artículo en Inglés | MEDLINE | ID: mdl-26836472

RESUMEN

The evolution of major cannabinoids and terpenes during the growth of Cannabis sativa plants was studied. In this work, seven different plants were selected: three each from chemotypes I and III and one from chemotype II. Fifty clones of each mother plant were grown indoors under controlled conditions. Every week, three plants from each variety were cut and dried, and the leaves and flowers were analyzed separately. Eight major cannabinoids were analyzed via HPLC-DAD, and 28 terpenes were quantified using GC-FID and verified via GC-MS. The chemotypes of the plants, as defined by the tetrahydrocannabinolic acid/cannabidiolic acid (THCA/CBDA) ratio, were clear from the beginning and stable during growth. The concentrations of the major cannabinoids and terpenes were determined, and different patterns were found among the chemotypes. In particular, the plants from chemotypes II and III needed more time to reach peak production of THCA, CBDA, and monoterpenes. Differences in the cannabigerolic acid development among the different chemotypes and between monoterpene and sesquiterpene evolution patterns were also observed. Plants of different chemotypes were clearly differentiated by their terpene content, and characteristic terpenes of each chemotype were identified.


Asunto(s)
Cannabinoides/análisis , Cannabis , Terpenos/análisis , Cannabis/química , Cannabis/genética , Cannabis/crecimiento & desarrollo , Cromatografía Líquida de Alta Presión , Flores/química , Cromatografía de Gases y Espectrometría de Masas , Estructura Molecular , Hojas de la Planta/química
13.
Anal Bioanal Chem ; 407(24): 7413-23, 2015 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-26229028

RESUMEN

This study describes a new method for the simultaneous extraction and enzymatic hydrolysis of alkylphenols, estrogens, bisphenol-A and phthalate metabolite (mono-2-ethylhexyl ester, MEHP) in fish bile using polyethersulfone (PES) polymer as sorptive material. Parameters affecting the hydrolysis (enzyme amount) and extraction (nature of polymeric material, PES desorption solvent nature and time, PES amount and time profile) were optimised. The optimum conditions were fixed as: 5 PES tubes (1.5 cm length × 0.7 mm o.d.) were added to a vessel with 100 µL of sample, 800 µL of ultrapure water, 1.5 mL phosphate buffer (0.1 mol L(-1), pH 6) and 200 µL of ß-glucuronidase (1000 U mL(-1)) enzyme and the mixture was stirred at 37 °C and 550 rpm for 3 h. Quantitative results were obtained after desorption of PES material using 500 µL of ethyl acetate. The extracts were reconstituted in 250 µL of methanol and analysed by liquid chromatography-tandem mass spectrometry, obtaining apparent recoveries in the range of 73-134 % using deuterated compounds surrogates corrections. Relative standard deviations below 27 % were obtained for all target analytes and the method detection limits (MDLs) were in low nanograms per mililliter level for all the studied compounds, except in the case of MEHP which was detected at higher concentration levels (ng µL(-1)) in bile samples that do not allow its MDL determination. Bisphenol A (MDL-10.8 ng mL(-1)), diethylstilbestrol (MDL-1.4 ng mL(-1)) and MEHP (975-2604 ng mL(-1)) were detected in grey mullets captured nearby the wastewater treatment plant of Gernika (Biosphere Reserve of Urdaibai).


Asunto(s)
Bilis/metabolismo , Disruptores Endocrinos/metabolismo , Glucuronidasa/metabolismo , Polímeros/química , Smegmamorpha/metabolismo , Sulfonas/química , Animales , Cromatografía Liquida , Disruptores Endocrinos/aislamiento & purificación , Espectrometría de Masas en Tándem
14.
Anal Bioanal Chem ; 406(29): 7549-60, 2014 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-25338935

RESUMEN

High performance liquid chromatography tandem mass spectrometry (HPLC-MS/MS) has been successfully applied to cannabis plant extracts in order to identify cannabinoid compounds after their quantitative isolation by means of supercritical fluid extraction (SFE). MS conditions were optimized by means of a central composite design (CCD) approach, and the analysis method was fully validated. Six major cannabinoids [tetrahydrocannabinolic acid (THCA), tetrahydrocannabinol (THC), cannabidiol (CBD), tetrahydrocannabivarin (THCV), cannabigerol (CBG), and cannabinol (CBN)] were quantified (RSD < 10%), and seven more cannabinoids were identified and verified by means of a liquid chromatograph coupled to a quadrupole-time-of-flight (Q-ToF) detector. Finally, based on the distribution of the analyzed cannabinoids in 30 Cannabis sativa L. plant varieties and the principal component analysis (PCA) of the resulting data, a clear difference was observed between outdoor and indoor grown plants, which was attributed to a higher concentration of THC, CBN, and CBD in outdoor grown plants.


Asunto(s)
Cannabinoides/análisis , Cannabinoides/química , Cannabis/química , Cromatografía de Gases/métodos , Cromatografía Líquida de Alta Presión/métodos , Extractos Vegetales/análisis , Extractos Vegetales/química
15.
Chemosphere ; 351: 141221, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38224745

RESUMEN

Suspect and non-target screening (SNTS) methods are being promoted in order to decode the human exposome since a wide chemical space can be analysed in a diversity of human biofluids. However, SNTS approaches in the exposomics field are infra-studied in comparison to environmental or food monitoring studies. In this work, a comprehensive suspect screening workflow was developed to annotate exposome-related xenobiotics and phase II metabolites in diverse human biofluids. Precisely, human urine, breast milk, saliva and ovarian follicular fluid were employed as samples and analysed by means of ultra-high performance liquid chromatography coupled with high resolution tandem mass spectrometry (UHPLC-HRMS/MS). To automate the workflow, the "peak rating" parameter implemented in Compound Discoverer 3.3.2 was optimized to avoid time-consuming manual revision of chromatographic peaks. In addition, the presence of endogenous molecules that might interfere with the annotation of xenobiotics was carefully studied as the employment of inclusion and exclusion suspect lists. To evaluate the workflow, limits of identification (LOIs) and type I and II errors (i.e., false positives and negatives, respectively) were calculated in both standard solutions and spiked biofluids using 161 xenobiotics and 22 metabolites. For 80.3 % of the suspects, LOIs below 15 ng/mL were achieved. In terms of type I errors, only two cases were identified in standards and spiked samples. Regarding type II errors, the 7.7 % errors accounted in standards increased to 17.4 % in real samples. Lastly, the use of an inclusion list for endogens was favoured since it avoided 18.7 % of potential type I errors, while the exclusion list caused 7.2 % of type II errors despite making the annotation workflow less time-consuming.


Asunto(s)
Exposoma , Femenino , Humanos , Xenobióticos/metabolismo , Flujo de Trabajo , Cromatografía Líquida de Alta Presión/métodos , Espectrometría de Masas en Tándem
16.
Commun Biol ; 7(1): 422, 2024 Apr 08.
Artículo en Inglés | MEDLINE | ID: mdl-38589605

RESUMEN

Marine Porifera host diverse microbial communities, which influence host metabolism and fitness. However, functional relationships between sponge microbiomes and metabolic signatures are poorly understood. We integrate microbiome characterization, metabolomics and microbial predicted functions of four coexisting Mediterranean sponges -Petrosia ficiformis, Chondrosia reniformis, Crambe crambe and Chondrilla nucula. Microscopy observations reveal anatomical differences in microbial densities. Microbiomes exhibit strong species-specific trends. C. crambe shares many rare amplicon sequence variants (ASV) with the surrounding seawater. This suggests important inputs of microbial diversity acquired by selective horizontal acquisition. Phylum Cyanobacteria is mainly represented in C. nucula and C. crambe. According to putative functions, the microbiome of P. ficiformis and C. reniformis are functionally heterotrophic, while C. crambe and C. nucula are autotrophic. The four species display distinct metabolic profiles at single compound level. However, at molecular class level they share a "core metabolome". Concurrently, we find global microbiome-metabolome association when considering all four sponge species. Within each species still, sets of microbe/metabolites are identified driving multi-omics congruence. Our findings suggest that diverse microbial players and metabolic profiles may promote niche diversification, but also, analogous phenotypic patterns of "symbiont evolutionary convergence" in sponge assemblages where holobionts co-exist in the same area.


Asunto(s)
Cianobacterias , Microbiota , Filogenia , Evolución Biológica , Cianobacterias/genética , Metaboloma
17.
Sci Total Environ ; 946: 174062, 2024 Oct 10.
Artículo en Inglés | MEDLINE | ID: mdl-38917906

RESUMEN

The concern on the fate and distribution of contaminants of emerging concern (CECs) is a burning topic due to their widespread occurrence and potential harmful effects. Particularly, antibiotics have received great attention due to their implications in antimicrobial resistance occurrence. The impact of wastewater treatment plants (WWTP) is remarkable, being one of the main pathways for the introduction of CECs into aquatic systems. The combination of novel analytical methodologies and risk assessment strategies is a promising tool to find out environmentally relevant compounds posing major concerns in freshwater ecosystems impacted by those wastewater effluents. Within this context, a multi-target approach was applied in three Spanish river basins affected by different WWTP treated effluents for spatio-temporal monitoring of their chemical status. Solid phase extraction followed by ultra-high-performance liquid chromatography were used for the quantification of a large panel of compounds (n = 270), including pharmaceuticals and other consumer products, pesticides and industrial chemicals. To this end, water samples were collected in four sampling campaigns at three locations in each basin: (i) upstream from the WWTPs; (ii) WWTP effluent discharge points (effluent outfall); and (iii) downstream from the WWTPs (500 m downriver from the effluent outfall). Likewise, 24-h composite effluent samples from each of the WWTPs were provided in all sampling periods. First the occurrence and distribution of these compounds were assessed. Diverse seasonal trends were observed depending on the group of emerging compounds, though COVID-19 outbreak affected variations of certain pharmaceuticals. Detection frequencies and concentrations in effluents generally exceeded those in river samples and concentrations measured upstream WWTPs were generally low or non-quantifiable. Finally, risks associated with maximum contamination levels were evaluated using two different approaches to account for antibiotic resistance selection as well. From all studied compounds, 89 evidenced environmental risk on at least one occasion in this study.


Asunto(s)
Monitoreo del Ambiente , Ríos , Eliminación de Residuos Líquidos , Aguas Residuales , Contaminantes Químicos del Agua , Ríos/química , Contaminantes Químicos del Agua/análisis , Medición de Riesgo , Aguas Residuales/química , España , Estaciones del Año
18.
Talanta ; 271: 125698, 2024 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-38262128

RESUMEN

Persistent, mobile and toxic substances have drawn attention nowadays due to their particular properties, but they are overlooked in human monitorization works, limiting the knowledge of the human exposome. In that sense, human urine is an interesting matrix since not only parent compounds are eliminated, but also their phase II metabolites that could act as biomarkers. In this work, 11 sample preparation procedures involving preconcentration were tested to ensure maximum analytical coverage in human urine using mixed-mode liquid chromatography coupled with high-resolution tandem mass spectrometry. The optimized procedure consisted of a combination of solid-phase extraction and salt-assisted liquid-liquid extraction and it was employed for suspect screening. Additionally, a non-discriminatory dilute-and-shoot approach was also evaluated. After evaluating the workflow in terms of limits of identification and type II errors (i.e., false negatives), a pooled urine sample was analysed. From a list of 1450 suspects and in-silico simulated 1568 phase II metabolites (i.e. sulphates, glucuronides, and glycines), 44 and 14 substances were annotated, respectively. Most of the screened suspects were diverse industrial chemicals, but biocides, natural products and pharmaceuticals were also detected. Lastly, the complementarity of the sample preparation procedures, columns, and analysis conditions was assessed. As a result, dilute-and-shoot and the Acclaim Trinity P1 column at pH = 3 (positive ionization) and pH = 7 (negative ionization) allowed the maximum coverage since almost 70 % of the total suspects could be screened using those conditions.


Asunto(s)
Líquidos Corporales , Espectrometría de Masas en Tándem , Humanos , Cromatografía Líquida de Alta Presión/métodos , Cromatografía Liquida , Espectrometría de Masas en Tándem/métodos , Manejo de Especímenes , Extracción en Fase Sólida/métodos
19.
J Sep Sci ; 36(8): 1397-404, 2013 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-23505258

RESUMEN

The optimisation of focused ultrasound extraction and supercritical fluid extraction of volatile oils and cannabinoids from marihuana has been accomplished by experimental design approach. On the one hand, the focused ultrasound extraction method of volatile compounds and cannabinoids was studied based on the optimisation of cyclohexane and isopropanol solvent mixtures, and the instrumental variables. The optimal working conditions were finally fixed at isopropanol/cyclohexane 1:1 mixture, cycles (3 s(-1)), amplitude (80%) and sonication time (5 min). On the other hand, the supercritical fluid extraction method was optimised in order to obtain a deterpenation of the plant and a subsequent cannabinoid extraction. For this purpose, pressure, temperature, flow and co-solvent percentage were optimised and the optimal working conditions were set at 100 bar, 35°C, 1 mL/min, no co-solvent for the terpenes and 20% of ethanol for the cannabinoids. Based on the retention time locking GC-MS analysis of the supercritical fluid extracts the classification of the samples according to the type of plant, the growing area and season was attained. Finally, three monoterpenes and three cannabinoids were quantified in the ranges of 0.006-6.2 µg/g and 0.96-324 mg/g, respectively.


Asunto(s)
Cannabis/química , Cromatografía con Fluido Supercrítico/métodos , Cromatografía de Gases y Espectrometría de Masas/métodos , Extractos Vegetales/aislamiento & purificación , Ultrasonido , Extractos Vegetales/química
20.
Methods Mol Biol ; 2687: 107-126, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37464166

RESUMEN

The determination of the concentration of endocannabinoids and related compounds in human plasma has become a matter of interest due to their implication in physiological processes and, thus, their possible relation with physiological conditions or illnesses. The analysis of these compounds though has to be carefully designed as they are found in very low concentrations, and some of them degrade easily once blood is collected. In this chapter, a simple method based on a liquid-liquid extraction and analysis by liquid chromatography tandem mass spectrometry (LC-MS/MS) is described to determine the concentration of eight of the most relevant endocannabinoids in plasma.


Asunto(s)
Endocannabinoides , Espectrometría de Masas en Tándem , Humanos , Cromatografía Liquida/métodos , Endocannabinoides/química , Espectrometría de Masas en Tándem/métodos , Extracción Líquido-Líquido , Cromatografía Líquida de Alta Presión/métodos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA