Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
1.
Phys Occup Ther Pediatr ; : 1-19, 2024 Feb 28.
Artículo en Inglés | MEDLINE | ID: mdl-38419343

RESUMEN

AIMS: Assess the potential benefits of using PedBotLab, a clinic based robotic ankle platform with integrated video game software, to improve ankle active and passive range of motion, strength, selective motor control, gait efficiency, and balance. METHODS: Ten participants with static neurological injuries and independent ambulation participated in a 10-week pilot study (Pro00013680) to assess feasibility and efficacy of PedBotLab as a therapeutic device twice weekly. Isometric ankle strength, passive and active ankle range of motion, plantarflexor spasticity, selective motor control of the lower extremity, balance, and gait speed were measured pre- and post-trial. RESULTS: Statistically significant improvements were seen in flexibility, active range of motion, and strength in multiple planes of ankle motion. Ankle dorsiflexion with knee flexion and knee extension demonstrated statistically significant results in all outcome measures. No significant changes were observed in gait speed outcomes. CONCLUSIONS: The use of PedbotLab can lead to improvements in ankle strength, flexibility, and active range of motion for children with static neurological injuries. Future studies aim to evaluate the effect on gait quality and work toward developing a home-based device.

2.
Pediatr Phys Ther ; 34(2): 212-219, 2022 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-35385456

RESUMEN

PURPOSE: This pilot study assesses the feasibility of using PedBotHome to promote adherence to a home exercise program, the ability of the device to withstand frequent use, and changes in participant ankle mobility.PedBotHome is a robotic ankle device with integrated video game software designed to improve ankle mobility in children with cerebral palsy. METHODS: Eight participants enrolled in a 28-day trial of PedBotHome. Ankle strength, range of motion, and plantar flexor spasticity were measured pre- and posttrial. Performance was monitored remotely, and game settings were modified weekly by physical therapists. RESULTS: Four participants met the study goal of 20 days of use. There were statistically significant improvements in ankle strength, spasticity, and range of motion. CONCLUSIONS: PedBotHome is a feasible device to engage children with static neurological injuries in ankle home exercise. This pilot study expands the paradigm for future innovative home-based robotic rehabilitation.


Asunto(s)
Procedimientos Quirúrgicos Robotizados , Juegos de Video , Tobillo , Articulación del Tobillo , Niño , Terapia por Ejercicio , Humanos , Espasticidad Muscular , Proyectos Piloto
3.
Curr Probl Pediatr Adolesc Health Care ; 52(12): 101311, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-36470810

RESUMEN

Leukodystrophies are defined as differences in normal myelin development and maintenance in the central nervous system. They typically present as white matter imaging abnormalities in young children with delayed developmental milestones. As the scientific community begins to better understand and research the mechanisms underlying leukodystrophies, clinical trials and approved therapies for specific disorders are becoming available. These interventions, ranging from repurposing of existing small molecules to recently approved gene therapies, are highly dependent on early diagnosis. It is essential for pediatricians to identify affected individuals promptly, but they face challenges including lack of awareness of the disorders and nonspecific symptom presentation (e.g., cognitive or motor developmental delay). This review provides five hypothetical clinical presentations and describes the disease mechanisms, typical symptoms, and treatments currently available for common leukodystrophies: Krabbe Disease, Aicardi Goutières Syndrome (AGS), Metachromatic leukodystrophy (MLD), Alexander Disease (AxD), Pelizaeus-Merzbacher Disease (PMD), and X-Linked Adrenoleukodystrophy (X-ALD.) This review educates pediatricians to recognize the presentation of leukodystrophies in affected children. These clinical vignettes can serve as a framework for pediatricians to identify potentially treatable rare disorders among their patients.


Asunto(s)
Adrenoleucodistrofia , Enfermedades Autoinmunes del Sistema Nervioso , Leucodistrofia de Células Globoides , Leucodistrofia Metacromática , Malformaciones del Sistema Nervioso , Niño , Humanos , Preescolar , Leucodistrofia Metacromática/diagnóstico , Leucodistrofia Metacromática/genética , Leucodistrofia de Células Globoides/diagnóstico , Leucodistrofia de Células Globoides/genética , Adrenoleucodistrofia/diagnóstico , Adrenoleucodistrofia/genética
4.
Informatics (MDPI) ; 7(4): 45-50, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-34522643

RESUMEN

Technological advances in game-mediated robotics provide an opportunity to engage children with cerebral palsy (CP) and other neuromotor disabilities in more frequent and intensive therapy by making personalized, programmed interventions available 24/7 in children's homes. Though shown to be clinically effective and feasible to produce, little is known of the subjective factors impacting acceptance of what we term assistive/rehabilitative (A/R) gamebots by their target populations. This research describes the conceptualization phase of an effort to develop a valid and reliable instrument to guide the design of A/R gamebots. We conducted in-depth interviews with 8 children with CP and their families who had trialed an exemplar A/R gamebot, PedBotHome, for 28 days in their homes. The goal was to understand how existing theories and instruments were either appropriate or inappropriate for measuring the subjective experience of A/R gamebots. Key findings were the importance of differentiating the use case of therapy from that of assistance in rehabilitative technology assessment, the need to incorporate the differing perspectives of children with CP and those of their parents into A/R gamebot evaluation, and the potential conflict between the goals of preserving the quality of the experience of game play for the child while also optimizing the intensity and duration of therapy provided during play.

5.
IEEE Int Conf Rehabil Robot ; 2019: 13-20, 2019 06.
Artículo en Inglés | MEDLINE | ID: mdl-31374600

RESUMEN

Our research team has developed two versions of an ankle robot for children with cerebral palsy. Both devices provide three degrees of freedom and are connected to an airplane video game. The child uses his/her foot as the controller for the plane and attempts to fly through a series of hoops arranged to manipulate the foot across the ankle joint. The first device is for lab-based therapy and four children have completed 20 sessions each with the device. The second device is for home-based therapy and two children have completed a 28-day trial using the device at home. Both studies were done under Institutional Review Board approval and all participants improved ankle range of motion. Further studies are ongoing to gather more data and validate the results.


Asunto(s)
Tobillo/fisiología , Parálisis Cerebral/rehabilitación , Modalidades de Fisioterapia/instrumentación , Robótica/métodos , Adolescente , Niño , Preescolar , Femenino , Ortesis del Pié , Servicios de Atención de Salud a Domicilio , Humanos , Masculino , Rango del Movimiento Articular , Interfaz Usuario-Computador
7.
Curr Probl Pediatr Adolesc Health Care ; 47(7): 173-177, 2017 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-28734746

RESUMEN

Myelomeningocele, commonly known as spina bifida, is a birth defect in which the spinal cord does not develop properly due to incomplete closure of the neural tube at 28 days of gestation. With advances in treatment modalities, technologies, and medical knowledge, people with spina bifida in the United States are living well into adulthood. Myelomeningocele management includes life-long comprehensive neurologic, urologic, musculoskeletal, skin, and habilitation management. We describe approaches to the same, with an emphasis on the signs and symptoms of medical urgencies and emergencies of which every pediatrician must be aware.


Asunto(s)
Disrafia Espinal/terapia , Manejo de la Enfermedad , Humanos , Enfermedades Musculoesqueléticas/etiología , Enfermedades Musculoesqueléticas/terapia , Enfermedades del Sistema Nervioso/etiología , Enfermedades del Sistema Nervioso/terapia , Enfermedades de la Piel/etiología , Enfermedades de la Piel/terapia , Disrafia Espinal/complicaciones , Disrafia Espinal/diagnóstico , Enfermedades Urológicas/etiología , Enfermedades Urológicas/terapia
8.
Curr Probl Pediatr Adolesc Health Care ; 47(7): 161-166, 2017 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-28716516

RESUMEN

Hypertonia is the abnormal increase in muscle tone as a result of upper motor neuron lesions. There are three following clinical types: spasticity, dystonia, and rigidity. Management of hypertonia is individualized and should be directed by the patient and/or family׳s goals of care as well as the underlying cause of the hypertonia. Treatment options include stretching, strengthening, positioning, oral medications, botulinum toxin injections, phenol injections, as well as surgical procedures. Without effective management, hypertonia can result in muscle imbalance, abnormal movement patterns, pain, joint contracture, joint deformity, and ultimately negatively impact a patient׳s function. This discussion serves as an overview of hypertonia, focusing on spasticity and dystonia, in the pediatric population by examining the causes and epidemiology, elucidating its symptoms, discussing available treatment and management options, and clarifying why this all matters.


Asunto(s)
Hipertonía Muscular/terapia , Baclofeno/uso terapéutico , Distonía/diagnóstico , Distonía/etiología , Distonía/terapia , Humanos , Hipertonía Muscular/diagnóstico , Hipertonía Muscular/etiología , Relajantes Musculares Centrales/uso terapéutico , Espasticidad Muscular/diagnóstico , Espasticidad Muscular/etiología , Espasticidad Muscular/terapia
9.
Curr Probl Pediatr Adolesc Health Care ; 47(7): 151-155, 2017 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-28709767

RESUMEN

Obstetrical brachial plexus palsy is a disorder of the peripheral nervous system and occurs in as many as 0.4% of infants born. It is associated with shoulder dystocia, use of mechanical extraction, and macrosomia; it occurs more frequently in infants born by vaginal delivery. The unilateral injury to the brachial plexus complex occurs during the delivery phase as lateral traction is applied to the head to permit shoulder clearance. The infant typically presents in the delivery room with decreased active movements of the affected arm and asymmetrical primitive reflex responses. The severity of nerve involvement can range from a stretch injury to complete avulsion. While full recovery is possible, prognosis is variable and up to 35% of children may have some degree of life-long functional impairment of the affected limb.


Asunto(s)
Traumatismos del Nacimiento/rehabilitación , Neuropatías del Plexo Braquial/rehabilitación , Traumatismos del Nacimiento/diagnóstico , Traumatismos del Nacimiento/etiología , Traumatismos del Nacimiento/terapia , Neuropatías del Plexo Braquial/diagnóstico , Neuropatías del Plexo Braquial/etiología , Neuropatías del Plexo Braquial/terapia , Parto Obstétrico/efectos adversos , Humanos , Pronóstico , Factores de Riesgo , Prevención Secundaria/métodos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA