Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
RNA Biol ; 13(1): 109-18, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-26680555

RESUMEN

The putative transfer and gene regulatory activities of diet-derived miRNAs in ingesting animals are still debated. Importantly, no study to date has fully examined the role of dietary uptake of miRNA in the honey bee, a critical pollinator in both agricultural and natural ecosystems. After controlled pollen feeding experiments in adult honey bees, we observed that midguts demonstrated robust increases in plant miRNAs after pollen ingestion. However, we found no evidence of biologically relevant delivery of these molecules to proximal or distal tissues of recipient honey bees. Our results, therefore, support the premise that pollen miRNAs ingested as part of a typical diet are not robustly transferred across barrier epithelia of adult honey bees under normal conditions. Key future questions include whether other small RNA species in honey bee diets behave similarly and whether more specialized and specific delivery mechanisms exist for more efficient transport, particularly in the context of stressed barrier epithelia.


Asunto(s)
Abejas/genética , MicroARNs/análisis , Polen/genética , ARN de Planta/análisis , Alimentación Animal , Animales , Abejas/fisiología , Tracto Gastrointestinal , Herbivoria , Distribución Tisular
2.
bioRxiv ; 2024 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-38746467

RESUMEN

Animals coordinate their behavior with each other during both cooperative and agonistic social interactions. Such coordination often adopts the form of "turn taking", in which the interactive partners alternate the performance of a behavior. Apart from acoustic communication, how turn taking between animals is coordinated is not well understood. Furthermore, the neural substrates that regulate persistence in engaging in social interactions are poorly studied. Here, we use Siamese fighting fish ( Betta splendens ), to study visually-driven turn-taking aggressive behavior. Using encounters with conspecifics and with animations, we characterize the dynamic visual features of an opponent and the behavioral sequences that drive turn taking. Through a brain-wide screen of neuronal activity during coordinated and persistent aggressive behavior, followed by targeted brain lesions, we find that the caudal portion of the dorsomedial telencephalon, an amygdala-like region, promotes persistent participation in aggressive interactions, yet is not necessary for coordination. Our work highlights how dynamic visual cues shape the rhythm of social interactions at multiple timescales, and points to the pallial amygdala as a region controlling engagement in such interactions. These results suggest an evolutionarily conserved role of the vertebrate pallial amygdala in regulating the persistence of emotional states.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA