RESUMEN
The lateral intraparietal area (LIP) plays a crucial role in target selection and attention in primates, but the laminar microcircuitry of this region is largely unknown. To address this, we used ultra-high density laminar electrophysiology with Neuropixels probes to record neural activity in the posterior parietal cortex (PPC) of two adult marmosets while they performed a simple visual target selection task. Our results reveal neural correlates of visual target selection in the marmoset, similar to those observed in macaques and humans, with distinct timing and profiles of activity across cell types and cortical layers. Notably, a greater proportion of neurons exhibited stimulus-related activity in superficial layers whereas a greater proportion of infragranular neurons exhibited significant postsaccadic activity. Stimulus-related activity was first observed in granular layer putative interneurons, whereas target discrimination activity emerged first in supragranular layers putative pyramidal neurons, supporting a canonical laminar circuit underlying visual target selection in marmoset PPC. These findings provide novel insights into the neural basis of visual attention and target selection in primates.
Asunto(s)
Callithrix , Lóbulo Parietal , Animales , Lóbulo Parietal/fisiología , Lóbulo Parietal/citología , Masculino , Femenino , Atención/fisiología , Estimulación Luminosa/métodos , Neuronas/fisiología , Percepción Visual/fisiologíaRESUMEN
Cognitive control is engaged by working memory processes and high-demand situations like antisaccade, where one must suppress a prepotent response. While it is known to be supported by the frontoparietal control network, how intra- and inter-areal dynamics contribute to cognitive control processes remain unclear. N-Methyl-D-aspartate glutamate receptors (NMDARs) play a key role in prefrontal dynamics that support cognitive control, and its antagonists, such as ketamine, are known to alter task-related prefrontal activities and impair cognitive performance. However, the role of NMDAR in cognitive control-related frontoparietal dynamics remain underexplored. Here, we simultaneously recorded local field potentials and single unit activities from lateral prefrontal (lPFC) and posterior parietal cortices (PPC) in two male macaque monkeys during a rule-based antisaccade task, with both Rule-Visible (RV) and Rule-Memorized (RM) conditions. In addition to altering the E/I balance in both areas, ketamine had a negative impact on rule-coding in true oscillatory activities. It also reduced frontoparietal coherence in a frequency- and rule-dependent manner. Granger prediction analysis revealed that ketamine induced an overall reduction in bidirectional connectivity. Among antisaccade trials, a greater reduction in lPFC-PPC connectivity during the delay period preceded a greater delay in saccadic onset under the RM condition, and a greater deficit in performance under the RV condition. Lastly, ketamine compromised rule coding in lPFC neurons in both RV and RM conditions, and in PPC neurons only in the RV condition. Our findings demonstrate the utility of acute NMDA receptor antagonist in understanding the mechanisms through which frontoparietal dynamics support cognitive control processes.Significance statement A low dose of ketamine is known to induce a transient cognitive control deficit in healthy humans and animals, but it remains unclear whether this deficit is related to a frontoparietal dysconnection. In macaque monkeys performing a rule-based pro- and anti-saccade task, we found that ketamine impaired information coding in frontoparietal neuron, local oscillations and inter-areal synchrony in a rule- and frequency-dependent manner. Notably, under the antisaccade rule, the amount of impairment in task performance could be predicted by the loss in fronto-parietal connectivity in the period just before the monkeys responded. The observations support the utility of NMDA receptor antagonists like ketamine as a tool to understand the role of frontoparietal dynamics in cognitive control.
RESUMEN
A prominent aspect of primate lateral prefrontal cortex organization is its division into several cytoarchitecturally distinct subregions. Neurophysiological investigations in macaques have provided evidence for the functional specialization of these subregions, but an understanding of the relative representational topography of sensory, social, and cognitive processes within them remains elusive. One explanatory factor is that evidence for functional specialization has been compiled largely from a patchwork of findings across studies, in many animals, and with considerable variation in stimulus sets and tasks. Here, we addressed this by leveraging the common marmoset (Callithrix jacchus) to carry out large-scale neurophysiological mapping of the lateral prefrontal cortex using high-density microelectrode arrays, and a diverse suite of test stimuli including faces, marmoset calls, and spatial working memory task. Task-modulated units and units responsive to visual and auditory stimuli were distributed throughout the lateral prefrontal cortex, while those with saccade-related activity or face-selective responses were restricted to 8aV, 8aD, 10, 46 V, and 47. Neurons with contralateral visual receptive fields were limited to areas 8aV and 8aD. These data reveal a mixed pattern of functional specialization in the lateral prefrontal cortex, in which responses to some stimuli and tasks are distributed broadly across lateral prefrontal cortex subregions, while others are more limited in their representation.
Asunto(s)
Callithrix , Corteza Prefrontal , Animales , Corteza Prefrontal/fisiología , Masculino , Femenino , Mapeo Encefálico , Memoria a Corto Plazo/fisiología , Estimulación Luminosa/métodos , Neuronas/fisiología , Estimulación Acústica , Movimientos Sacádicos/fisiología , Percepción Auditiva/fisiología , Vocalización Animal/fisiologíaRESUMEN
The correct identification of facial expressions is critical for understanding the intention of others during social communication in the daily life of all primates. Here we used ultra-high-field fMRI at 9.4 T to investigate the neural network activated by facial expressions in awake New World common marmosets from both male and female sex, and to determine the effect of facial motions on this network. We further explored how the face-patch network is involved in the processing of facial expressions. Our results show that dynamic and static facial expressions activate face patches in temporal and frontal areas (O, PV, PD, MD, AD, and PL) as well as in the amygdala, with stronger responses for negative faces, also associated with an increase of the respiration rates of the monkey. Processing of dynamic facial expressions involves an extended network recruiting additional regions not known to be part of the face-processing network, suggesting that face motions may facilitate the recognition of facial expressions. We report for the first time in New World marmosets that the perception and identification of changeable facial expressions, vital for social communication, recruit face-selective brain patches also involved in face detection processing and are associated with an increase of arousal.SIGNIFICANCE STATEMENT Recent research in humans and nonhuman primates has highlighted the importance to correctly recognize and process facial expressions to understand others' emotions in social interactions. The current study focuses on the fMRI responses of emotional facial expressions in the common marmoset (Callithrix jacchus), a New World primate species sharing several similarities of social behavior with humans. Our results reveal that temporal and frontal face patches are involved in both basic face detection and facial expression processing. The specific recruitment of these patches for negative faces associated with an increase of the arousal level show that marmosets process facial expressions of their congener, vital for social communication.
Asunto(s)
Callithrix , Expresión Facial , Humanos , Animales , Masculino , Femenino , Mapeo Encefálico , Encéfalo/diagnóstico por imagen , Encéfalo/fisiología , Emociones/fisiología , Imagen por Resonancia MagnéticaRESUMEN
PURPOSE: To investigate microstructural alterations induced by perfusion fixation in brain tissues using advanced diffusion MRI techniques and estimate their potential impact on the application of ex vivo models to in vivo microstructure. METHODS: We used oscillating gradient spin echo (OGSE) and b-tensor encoding diffusion MRI to examine in vivo and ex vivo microstructural differences in the marmoset brain. OGSE was used to shorten effective diffusion times, whereas b-tensor encoding allowed for the differentiation of isotropic and anisotropic kurtosis. Additionally, we performed Monte Carlo simulations to estimate the potential microstructural changes in the tissues. RESULTS: We report large changes (Ë50%-60%) in kurtosis frequency dispersion (OGSE) and in both anisotropic and isotropic kurtosis (b-tensor encoding) after perfusion fixation. Structural MRI showed an average volume reduction of about 10%. Monte Carlo simulations indicated that these alterations could likely be attributed to extracellular fluid loss possibly combined with axon beading and increased dot compartment signal fraction. Little evidence was observed for reductions in axonal caliber. CONCLUSION: Our findings shed light on advanced MRI parameter changes that are induced by perfusion fixation and potential microstructural sources for these changes. This work also suggests that caution should be exercised when applying ex vivo models to infer in vivo tissue microstructure, as significant differences may arise.
RESUMEN
Persistent delay-period activity in prefrontal cortex (PFC) has long been regarded as a neural signature of working memory (WM). Electrophysiological investigations in macaque PFC have provided much insight into WM mechanisms; however, a barrier to understanding is the fact that a portion of PFC lies buried within the principal sulcus in this species and is inaccessible for laminar electrophysiology or optical imaging. The relatively lissencephalic cortex of the New World common marmoset (Callithrix jacchus) circumvents such limitations. It remains unknown, however, whether marmoset PFC neurons exhibit persistent activity. Here, we addressed this gap by conducting wireless electrophysiological recordings in PFC of marmosets performing a delayed-match-to-location task on a home cage-based touchscreen system. As in macaques, marmoset PFC neurons exhibited sample-, delay-, and response-related activity that was directionally tuned and linked to correct task performance. Models constructed from population activity consistently and accurately predicted stimulus location throughout the delay period, supporting a framework of delay activity in which mnemonic representations are relatively stable in time. Taken together, our findings support the existence of common neural mechanisms underlying WM performance in PFC of macaques and marmosets and thus validate the marmoset as a suitable model animal for investigating the microcircuitry underlying WM.
Asunto(s)
Callithrix , Corteza Prefrontal , Animales , Callithrix/fisiología , Corteza Prefrontal/fisiología , Corteza Cerebral/fisiología , Memoria a Corto Plazo/fisiología , MacacaRESUMEN
The common marmoset has enormous promise as a nonhuman primate model of human brain functions. While resting-state functional MRI (fMRI) has provided evidence for a similar organization of marmoset and human cortices, the technique cannot be used to map the functional correspondences of brain regions between species. This limitation can be overcome by movie-driven fMRI (md-fMRI), which has become a popular tool for noninvasively mapping the neural patterns generated by rich and naturalistic stimulation. Here, we used md-fMRI in marmosets and humans to identify whole-brain functional correspondences between the two primate species. In particular, we describe functional correlates for the well-known human face, body, and scene patches in marmosets. We find that these networks have a similar organization in both species, suggesting a largely conserved organization of higher-order visual areas between New World marmoset monkeys and humans. However, while face patches in humans and marmosets were activated by marmoset faces, only human face patches responded to the faces of other animals. Together, the results demonstrate that higher-order visual processing might be a conserved feature between humans and New World marmoset monkeys but that small, potentially important functional differences exist.
Asunto(s)
Mapeo Encefálico/métodos , Encéfalo/fisiología , Callithrix/fisiología , Cara/fisiología , Imagen por Resonancia Magnética/métodos , Vías Nerviosas , Percepción Visual/fisiología , Adulto , Animales , Encéfalo/anatomía & histología , Cara/anatomía & histología , Femenino , Humanos , Masculino , Persona de Mediana Edad , Adulto JovenRESUMEN
The default-mode network (DMN) is a distributed functional brain system integral for social and higher-order cognition in humans with implications in a myriad of neuropsychological disorders. In this study, we compared the functional architecture of the DMN between humans and marmosets to assess their similarities and differences using joint gradients. This approach permits simultaneous large-scale mapping of functional systems across the cortex of humans and marmosets, revealing evidence of putative homologies between them. In doing so, we find that the DMN architecture of the marmoset exhibits differences along its anterolateral-posterior axis. Specifically, the anterolateral node of the DMN (dorsolateral prefrontal cortex) displayed weak connections and inconsistent connection topographies as compared to its posterior DMN-nodes (posterior cingulate and posterior parietal cortices). We also present evidence that the marmoset medial prefrontal cortex and temporal lobe areas correspond to other macroscopical distributed functional systems that are not part of the DMN. Given the importance of the marmoset as a pre-clinical primate model for higher-order cognitive functioning and the DMN's relevance to cognition, our results suggest that the marmoset may lack the capacity to integrate neural information to subserve cortical dynamics that are necessary for supporting diverse cognitive demands.
Asunto(s)
Mapeo Encefálico , Callithrix , Animales , Humanos , Mapeo Encefálico/métodos , Red en Modo Predeterminado , Imagen por Resonancia Magnética/métodos , Encéfalo , Vías NerviosasRESUMEN
Frontoparietal networks contribute to complex cognitive functions in humans and macaques, such as working memory, attention, task-switching, response suppression, grasping, reaching, and eye movement control. However, there has been no comprehensive examination of the functional organization of frontoparietal networks using functional magnetic resonance imaging in the New World common marmoset monkey (Callithrix jacchus), which is now widely recognized as a powerful nonhuman primate experimental animal. In this study, we employed hierarchical clustering of interareal blood oxygen level-dependent signals to investigate the hypothesis that the organization of the frontoparietal cortex in the marmoset follows the organizational principles of the macaque frontoparietal system. We found that the posterior part of the lateral frontal cortex (premotor regions) was functionally connected to the anterior parietal areas, while more anterior frontal regions (frontal eye field [FEF]) were connected to more posterior parietal areas (the region around the lateral intraparietal area [LIP]). These overarching patterns of interareal organization are consistent with a recent macaque study. These findings demonstrate parallel frontoparietal processing streams in marmosets and support the functional similarities of FEF-LIP and premotor-anterior parietal pathways between marmoset and macaque.
Asunto(s)
Callithrix , Imagen por Resonancia Magnética , Animales , Mapeo Encefálico , Callithrix/fisiología , Corteza Cerebral , Lóbulo Frontal/diagnóstico por imagen , Lóbulo Frontal/fisiología , Macaca , VigiliaRESUMEN
With the medial frontal cortex (MFC) centrally implicated in several major neuropsychiatric disorders, it is critical to understand the extent to which MFC organization is comparable between humans and animals commonly used in preclinical research (namely rodents and nonhuman primates). Although the cytoarchitectonic structure of the rodent MFC has mostly been conserved in humans, it is a long-standing question whether the structural analogies translate to functional analogies. Here, we probed this question using ultra high field fMRI data to compare rat, marmoset, and human MFC functional connectivity. First, we applied hierarchical clustering to intrinsically define the functional boundaries of the MFC in all three species, independent of cytoarchitectonic definitions. Then, we mapped the functional connectivity "fingerprints" of these regions with a number of different brain areas. Because rats do not share cytoarchitectonically defined regions of the lateral frontal cortex (LFC) with primates, the fingerprinting method also afforded the unique ability to compare the rat MFC and marmoset LFC, which have often been suggested to be functional analogs. The results demonstrated remarkably similar intrinsic functional organization of the MFC across the species, but clear differences between rodent and primate MFC whole-brain connectivity. Rat MFC patterns of connectivity showed greatest similarity with premotor regions in the marmoset, rather than dorsolateral prefrontal regions, which are often suggested to be functionally comparable. These results corroborate the viability of the marmoset as a preclinical model of human MFC dysfunction, and suggest divergence of functional connectivity between rats and primates in both the MFC and LFC.
Asunto(s)
Vías Nerviosas/fisiología , Corteza Prefrontal/fisiología , Animales , Evolución Biológica , Encéfalo/fisiología , Mapeo Encefálico/métodos , Callithrix/anatomía & histología , Conectoma/métodos , Femenino , Lóbulo Frontal/anatomía & histología , Lóbulo Frontal/fisiología , Sustancia Gris/fisiología , Humanos , Imagen por Resonancia Magnética/métodos , Masculino , Vías Nerviosas/anatomía & histología , Corteza Prefrontal/anatomía & histología , Ratas , Ratas WistarRESUMEN
The common marmoset (Callithrix jacchus) is quickly gaining traction as a premier neuroscientific model. However, considerable progress is still needed in understanding the functional and structural organization of the marmoset brain to rival that documented in longstanding preclinical model species, like mice, rats, and Old World primates. To accelerate such progress, we present the Marmoset Functional Brain Connectivity Resource (marmosetbrainconnectome.org), currently consisting of over 70 h of resting-state fMRI (RS-fMRI) data acquired at 500 µm isotropic resolution from 31 fully awake marmosets in a common stereotactic space. Three-dimensional functional connectivity (FC) maps for every cortical and subcortical gray matter voxel are stored online. Users can instantaneously view, manipulate, and download any whole-brain functional connectivity (FC) topology (at the subject- or group-level) along with the raw datasets and preprocessing code. Importantly, researchers can use this resource to test hypotheses about FC directly - with no additional analyses required - yielding whole-brain correlations for any gray matter voxel on demand. We demonstrate the resource's utility for presurgical planning and comparison with tracer-based neuronal connectivity as proof of concept. Complementing existing structural connectivity resources for the marmoset brain, the Marmoset Functional Brain Connectivity Resource affords users the distinct advantage of exploring the connectivity of any voxel in the marmoset brain, not limited to injection sites nor constrained by regional atlases. With the entire raw database (RS-fMRI and structural images) and preprocessing code openly available for download and use, we expect this resource to be broadly valuable to test novel hypotheses about the functional organization of the marmoset brain.
Asunto(s)
Callithrix , Vigilia , Acceso a la Información , Animales , Encéfalo/fisiología , Callithrix/fisiología , Humanos , Imagen por Resonancia Magnética/métodos , Ratones , RatasRESUMEN
In primates, both the dorsal anterior cingulate cortex (dACC) and the dorsolateral prefrontal cortex (dlPFC) are key regions of the frontoparietal cognitive control network. To study the role of the dACC and its communication with the dlPFC in cognitive control, we recorded local field potentials (LFPs) from the dlPFC before and during the reversible deactivation of the dACC, in macaque monkeys engaging in uncued switches between 2 stimulus-response rules, namely prosaccade and antisaccade. Cryogenic dACC deactivation impaired response accuracy during maintenance of-but not the initial switching to-the cognitively demanding antisaccade rule, which coincided with a reduction in task-related theta activity and the correct-error (C-E) difference in dlPFC beta-band power. During both rule switching and maintenance, dACC deactivation prolonged the animals' reaction time and reduced task-related alpha power in the dlPFC. Our findings support a role of the dACC in prefrontal oscillatory activities that are involved the maintenance of a new, challenging task rule.
Asunto(s)
Cognición/fisiología , Giro del Cíngulo/fisiología , Corteza Prefrontal/fisiología , Desempeño Psicomotor/fisiología , Movimientos Sacádicos/fisiología , Potenciales de Acción/fisiología , Animales , Atención/fisiología , Frío , Macaca fascicularis , Macaca mulatta , Masculino , Estimulación Luminosa/métodos , Tiempo de Reacción/fisiologíaRESUMEN
Understanding the similarity of cortico-subcortical networks topologies between humans and nonhuman primate species is critical to study the origin of network alternations underlying human neurologic and neuropsychiatric diseases. The New World common marmoset (Callithrix jacchus) has become popular as a nonhuman primate model for human brain function. Most marmoset connectomic research, however, has exclusively focused on cortical areas, with connectivity to subcortical networks less extensively explored. Here, we aimed to first isolate patterns of subcortical connectivity with cortical resting-state networks in awake marmosets using resting-state fMRI, then to compare these networks with those in humans using connectivity fingerprinting. In this study, we used 5 marmosets (4 males, 1 female). While we could match several marmoset and human resting-state networks based on their functional fingerprints, we also found a few striking differences, for example, strong functional connectivity of the default mode network with the superior colliculus in marmosets that was much weaker in humans. Together, these findings demonstrate that many of the core cortico-subcortical networks in humans are also present in marmosets, but that small, potentially functionally relevant differences exist.SIGNIFICANCE STATEMENT The common marmoset is becoming increasingly popular as an additional preclinical nonhuman primate model for human brain function. Here we compared the functional organization of cortico-subcortical networks in marmosets and humans using ultra-high field fMRI. We isolated the patterns of subcortical connectivity with cortical resting-state networks (RSNs) in awake marmosets using resting-state fMRI and then compared these networks with those in humans using connectivity fingerprinting. While we could match several marmoset and human RSNs based on their functional fingerprints, we also found several striking differences. Together, these findings demonstrate that many of the core cortico-subcortical RSNs in humans are also present in marmosets, but that small, potentially functionally relevant differences exist.
Asunto(s)
Corteza Cerebral/fisiología , Vías Nerviosas/fisiología , Animales , Callithrix , Corteza Cerebral/diagnóstico por imagen , Conectoma , Femenino , Humanos , Imagen por Resonancia Magnética , Masculino , Vías Nerviosas/diagnóstico por imagen , Descanso/fisiología , Especificidad de la Especie , Colículos Superiores/fisiologíaRESUMEN
Unilateral damage to the frontoparietal network typically impairs saccade target selection within the contralesional visual hemifield. Severity of deficits and the degree of recovery have been associated with widespread network dysfunction, yet it is not clear how these behavioural and functional brain changes relate with the underlying structural white matter tracts. Here, we investigated whether recovery after unilateral prefrontal cortex (PFC) lesions was associated with changes in white matter microstructure across large-scale frontoparietal cortical and thalamocortical networks. Diffusion-weighted imaging was acquired in four male rhesus macaques at pre-lesion, week 1, and week 8-16 post-lesion when target selection deficits largely recovered. Probabilistic tractography was used to reconstruct cortical frontoparietal fiber tracts, including the superior longitudinal fasciculus (SLF) and transcallosal fibers connecting the PFC or posterior parietal cortex (PPC), as well as thalamocortical fiber tracts connecting the PFC and PPC to thalamic nuclei. We found that the two animals with small PFC lesions showed increased fractional anisotropy in both cortical and thalamocortical fiber tracts when behaviour had recovered. However, we found that fractional anisotropy decreased in cortical frontoparietal tracts after larger PFC lesions yet increased in some thalamocortical tracts at the time of behavioural recovery. These findings indicate that behavioural recovery after small PFC lesions may be supported by both cortical and subcortical areas, whereas larger PFC lesions may have induced widespread structural damage and hindered compensatory remodeling in the cortical frontoparietal network.
Asunto(s)
Imagen de Difusión por Resonancia Magnética/métodos , Red Nerviosa/diagnóstico por imagen , Corteza Prefrontal/diagnóstico por imagen , Recuperación de la Función/fisiología , Tálamo/diagnóstico por imagen , Sustancia Blanca/diagnóstico por imagen , Animales , Macaca mulatta , Masculino , Red Nerviosa/efectos de los fármacos , Red Nerviosa/fisiología , Estimulación Luminosa/métodos , Corteza Prefrontal/efectos de los fármacos , Corteza Prefrontal/fisiología , Recuperación de la Función/efectos de los fármacos , Tálamo/efectos de los fármacos , Tálamo/fisiología , Vasoconstrictores/toxicidad , Sustancia Blanca/efectos de los fármacos , Sustancia Blanca/fisiologíaRESUMEN
Neurophysiological and anatomical data suggest the existence of several functionally distinct regions in the lower arcuate sulcus and adjacent postarcuate convexity of the macaque monkey. Ventral premotor F5c lies on the postarcuate convexity and consists of a dorsal hand-related and ventral mouth-related field. The posterior bank of the lower arcuate contains two additional premotor F5 subfields at different anterior-posterior levels, F5a and F5p. Anterior to F5a, area 44 has been described as a dysgranular zone occupying the deepest part of the fundus of the inferior arcuate. Finally, area GrFO occupies the most rostral portion of the fundus and posterior bank of inferior arcuate and extends ventrally onto the frontal operculum. Recently, data-driven exploratory approaches using resting-state fMRI data have been suggested as a promising non-invasive method for examining the functional organization of the primate brain. Here, we examined to what extent partitioning schemes derived from data-driven clustering analysis of resting-state fMRI data correspond with the proposed organization of the fundus and posterior bank of the macaque arcuate sulcus, as suggested by invasive architectonical, connectional and functional investigations. Using a hierarchical clustering analysis, we could retrieve clusters corresponding to the dorsal and ventral portions of F5c on the postarcuate convexity, F5a and F5p at different antero-posterior locations on the posterior bank of the lower arcuate, area 44 in the fundus, as well as part of area GrFO in the most anterior portion of the fundus. Additionally, each of these clusters displayed distinct whole-brain functional connectivity, in line with previous anatomical tracer and seed-based functional connectivity investigations of F5/44 subdivisions. Overall, our data suggests that hierarchical clustering analysis of resting-state fMRI data can retrieve a fine-grained level of cortical organization that resembles detailed parcellation schemes derived from invasive functional and anatomical investigations.
Asunto(s)
Mapeo Encefálico/métodos , Corteza Motora/anatomía & histología , Corteza Motora/fisiología , Animales , Análisis por Conglomerados , Femenino , Procesamiento de Imagen Asistido por Computador/métodos , Macaca mulatta , Imagen por Resonancia Magnética/métodos , Masculino , Vías Nerviosas/anatomía & histología , Vías Nerviosas/fisiologíaRESUMEN
Changes in resting-state functional connectivity (rs-FC) under general anesthesia have been widely studied with the goal of identifying neural signatures of consciousness. This work has commonly revealed an apparent fragmentation of whole-brain network structure during unconsciousness, which has been interpreted as reflecting a break-down in connectivity and a disruption of the brain's ability to integrate information. Here we show, by studying rs-FC under varying depths of isoflurane-induced anesthesia in nonhuman primates, that this apparent fragmentation, rather than reflecting an actual change in network structure, can be simply explained as the result of a global reduction in FC. Specifically, by comparing the actual FC data to surrogate data sets that we derived to test competing hypotheses of how FC changes as a function of dose, we found that increases in whole-brain modularity and the number of network communities - considered hallmarks of fragmentation - are artifacts of constructing FC networks by thresholding based on correlation magnitude. Taken together, our findings suggest that deepening levels of unconsciousness are instead associated with the increasingly muted expression of functional networks, an observation that constrains current interpretations as to how anesthesia-induced FC changes map onto existing neurobiological theories of consciousness.
Asunto(s)
Anestesia General/métodos , Anestésicos por Inhalación/administración & dosificación , Encéfalo/diagnóstico por imagen , Encéfalo/fisiología , Red Nerviosa/diagnóstico por imagen , Red Nerviosa/fisiología , Animales , Encéfalo/efectos de los fármacos , Estado de Conciencia/efectos de los fármacos , Estado de Conciencia/fisiología , Femenino , Macaca fascicularis , Imagen por Resonancia Magnética/métodos , Masculino , Red Nerviosa/efectos de los fármacosRESUMEN
Faces are stimuli of critical importance for primates. The common marmoset (Callithrix jacchus) is a promising model for investigations of face processing, as this species possesses oculomotor and face-processing networks resembling those of macaques and humans. Face processing is often disrupted in neuropsychiatric conditions such as schizophrenia (SZ), and thus, it is important to recapitulate underlying circuitry dysfunction preclinically. The N-methyl-d-aspartate (NMDA) noncompetitive antagonist ketamine has been used extensively to model the cognitive symptoms of SZ. Here, we investigated the effects of a subanesthetic dose of ketamine on oculomotor behavior in marmosets during face viewing. Four marmosets received systemic ketamine or saline injections while viewing phase-scrambled or intact videos of conspecifics' faces. To evaluate effects of ketamine on scan paths during face viewing, we identified regions of interest in each face video and classified locations of saccade onsets and landing positions within these areas. A preference for the snout over eye regions was observed following ketamine administration. In addition, regions in which saccades landed could be significantly predicted by saccade onset region in the saline but not the ketamine condition. Effects on saccade control were limited to an increase in saccade peak velocity in all conditions and a reduction in saccade amplitudes during viewing of scrambled videos. Thus, ketamine induced a significant disruption of scan paths during viewing of conspecific faces but limited effects on saccade motor control. These findings support the use of ketamine in marmosets for investigating changes in neural circuits underlying social cognition in neuropsychiatric disorders.NEW & NOTEWORTHY Face processing, an important social cognitive ability, is impaired in neuropsychiatric conditions such as schizophrenia. The highly social common marmoset model presents an opportunity to investigate these impairments. We administered subanesthetic doses of ketamine to marmosets to model the cognitive symptoms of schizophrenia. We observed a disruption of scan paths during viewing of conspecifics' faces. These findings support the use of ketamine in marmosets as a model for investigating social cognition in neuropsychiatric disorders.
Asunto(s)
Antagonistas de Aminoácidos Excitadores/toxicidad , Expresión Facial , Fijación Ocular/efectos de los fármacos , Ketamina/toxicidad , Estimulación Luminosa/métodos , Cognición Social , Animales , Callithrix , Femenino , Fijación Ocular/fisiología , Masculino , Movimientos Sacádicos/efectos de los fármacos , Movimientos Sacádicos/fisiologíaRESUMEN
The common marmoset (Callithrix jacchus) is a New World primate that is becoming increasingly popular as a preclinical model. To assess functional connectivity (FC) across the marmoset brain, resting-state functional MRI (RS-fMRI) is often performed under isoflurane anesthesia to avoid the effects of motion, physiological stress, and training requirements. In marmosets, however, it remains unclear how isoflurane anesthesia affects patterns of FC. Here, we investigated the effects of isoflurane on FC when delivered with either medical air or 100% pure oxygen, two canonical methods of inhalant isoflurane anesthesia delivery. The results demonstrated that when delivered with either medical air or 100% oxygen, isoflurane globally decreased FC across resting-state networks that were identified in awake marmosets. Generally, although isoflurane globally decreased FC in resting-state networks, the spatial structure of the networks was preserved. Outside of the context of RS networks, we indexed pair-wise functional connectivity between regions across the brain and found that isoflurane substantially altered interhemispheric and thalamic FC. Taken together, these findings indicate that RS-fMRI under isoflurane anesthesia is useful to evaluate the global structure of functional networks, but may obfuscate important nodes of some network components when compared to data acquired in fully awake marmosets.
Asunto(s)
Anestésicos por Inhalación/farmacología , Encéfalo/efectos de los fármacos , Isoflurano/farmacología , Vías Nerviosas/efectos de los fármacos , Descanso , Vigilia , Animales , Encéfalo/fisiología , Callithrix , Femenino , Imagen por Resonancia Magnética , Masculino , Vías Nerviosas/fisiología , Descanso/fisiología , Vigilia/fisiologíaRESUMEN
General anesthetics are routinely used to induce unconsciousness, and much is known about their effects on receptor function and single neuron activity. Much less is known about how these local effects are manifest at the whole-brain level nor how they influence network dynamics, especially past the point of induced unconsciousness. Using resting-state functional magnetic resonance imaging (fMRI) with nonhuman primates, we investigated the dose-dependent effects of anesthesia on whole-brain temporal modular structure, following loss of consciousness. We found that higher isoflurane dose was associated with an increase in both the number and isolation of whole-brain modules, as well as an increase in the uncoordinated movement of brain regions between those modules. Conversely, we found that higher dose was associated with a decrease in the cohesive movement of brain regions between modules, as well as a decrease in the proportion of modules in which brain regions participated. Moreover, higher dose was associated with a decrease in the overall integrity of networks derived from the temporal modules, with the exception of a single, sensory-motor network. Together, these findings suggest that anesthesia-induced unconsciousness results from the hierarchical fragmentation of dynamic whole-brain network structure, leading to the discoordination of temporal interactions between cortical modules.
Asunto(s)
Encéfalo/fisiopatología , Estado de Conciencia/fisiología , Isoflurano/farmacología , Inconsciencia/fisiopatología , Animales , Encéfalo/efectos de los fármacos , Mapeo Encefálico , Estado de Conciencia/efectos de los fármacos , Haplorrinos , Imagen por Resonancia Magnética/métodos , Red Nerviosa/efectos de los fármacos , Red Nerviosa/fisiología , Vías Nerviosas/efectos de los fármacos , Vías Nerviosas/fisiología , Descanso/fisiología , Inconsciencia/inducido químicamenteRESUMEN
Cognitive control often requires suppression of prepotent stimulus-driven responses in favor of less potent alternatives. Suppression of prepotent saccades has been shown to require proactive inhibition in the frontoparietal saccade network. Electrophysiological evidence in macaque monkeys has revealed neural correlates of such inhibition in this network; however, the interlaminar instantiation of inhibitory processes remains poorly understood because these areas lie deep within sulci in macaques, rendering them inaccessible to laminar recordings. Here, we addressed this gap by exploiting the mostly lissencephalic cortex of the common marmoset (Callithrix jacchus). We inserted linear electrode arrays into areas 8Ad-the putative marmoset frontal eye field-and the lateral intraparietal area of two male marmosets and recorded neural activity during performance of a task comprised of alternating blocks of trials requiring a saccade either toward a large, high-luminance stimulus or the inhibition of this prepotent response in favor of a saccade toward a small, low-luminance stimulus. We observed prominent task-dependent activity in both alpha/gamma bands of the LFP and discharge rates of single neurons in area 8Ad during a prestimulus task epoch in which the animals had been instructed which of these two tasks to perform but before peripheral stimulus onset. These data are consistent with a model in which rhythmic alpha-band activity in deeper layers inhibits spiking in upper layers to support proactive inhibitory saccade control.SIGNIFICANCE STATEMENT Failures to inhibit automatic saccadic responses are a hallmark of many neuropsychiatric disorders, but how this process is implemented across the cortical layers in the frontoparietal saccade network remains unknown because many of the areas are inaccessible to laminar recordings in macaques. Here, we investigated laminar neural activity in marmoset monkeys, which have a smooth cortex. Monkeys were required either to generate or inhibit a prepotent saccade response. In area 8Ad, the putative frontal eye field in marmosets, rhythmic alpha-band activity (9-14 Hz) was higher in deeper layers and spiking activity was lower in upper layers when the animals were instructed to suppress a saccade toward a peripheral stimulus. Reduced alpha power during task preparation may be the underlying common neural basis of a saccade suppression deficit.