Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
1.
Int J Mol Sci ; 24(7)2023 Mar 26.
Artículo en Inglés | MEDLINE | ID: mdl-37047227

RESUMEN

The study reveals the polymer-crosslinker interactions and functionality of hydrophilic nanofibers for antibacterial wound coatings. Coaxial electrospinning leverages a drug encapsulation protocol for a core-shell fiber composite with a core derived from polyvinyl alcohol and polyethylene glycol with amorphous silica (PVA-PEG-SiO2), and a shell originating from polyvinyl alcohol and graphene oxide (PVA-GO). Crosslinking with GO and SiO2 initiates the hydrogel transition for the fiber composite upon contact with moisture, which aims to optimize the drug release. The effect of hydrogel-inducing additives on the drug kinetics is evaluated in the case of chlorhexidine digluconate (CHX) encapsulation in the core of core-shell fiber composite PVA-PEG-SiO2-1x-CHX@PVA-GO. The release rate is assessed with the zero, first-order, Higuchi, and Korsmeyer-Peppas kinetic models, where the inclusion of crosslinking silica provides a longer degradation and release rate. CHX medicated core-shell composite provides sustainable antibacterial activity against Staphylococcus aureus.


Asunto(s)
Grafito , Nanofibras , Grafito/farmacología , Alcohol Polivinílico , Dióxido de Silicio , Hidrogeles/farmacología , Antibacterianos/farmacología , Antibacterianos/uso terapéutico , Vendajes , Nanofibras/uso terapéutico
2.
Nanotechnology ; 32(43)2021 Aug 04.
Artículo en Inglés | MEDLINE | ID: mdl-34271553

RESUMEN

Graphene-based materials play an essential role in a wide range of modern technologies due to their surface properties such as adsorption capacity and controllable wettability, which depend on the production methods. For practical applications, it is crucial to control the surface properties to achieve the desired wetting characteristics, which can be described with the contact angle (CA). Here, we experimentally investigate the wettability properties of the carbon nanowalls and show how to manage a wetting transition from superhydrophobic to superhydrophilic states. A CA of 170° was reached with direct plasma synthesis, while an angle smaller than 20° was achieved during the atmosphere plasma modification. Combining the formation of the surface groups due to the plasma treatment results and the macroscale wetting behavior in terms of the Cassie-Baxter model, we qualitatively explain how the observed wetting enhancement is induced by both controlled chemical and geometrical surface-heterogeneity.

3.
Sci Total Environ ; 946: 174332, 2024 Jun 29.
Artículo en Inglés | MEDLINE | ID: mdl-38950630

RESUMEN

Cathodic electroactive bacteria (C-EAB) which are capable of accepting electrons from solid electrodes provide fresh avenues for pollutant removal, biosensor design, and electrosynthesis. This review systematically summarized the burgeoning applications of the C-EAB over the past decade, including 1) removal of nitrate, aromatic derivatives, and metal ions; 2) biosensing based on biocathode; 3) electrosynthesis of CH4, H2, organic carbon, NH3, and protein. In addition, the mechanisms of electron transfer by the C-EAB are also classified and summarized. Extracellular electron transfer and interspecies electron transfer have been introduced, and the electron transport mechanism of typical C-EAB, such as Shewanella oneidensis MR-1, has been combed in detail. By bringing to light this cutting-edge area of the C-EAB, this review aims to stimulate more interest and research on not only exploring great potential applications of these electron-accepting bacteria, but also developing steady and scalable processes harnessing biocathodes.

4.
Materials (Basel) ; 16(3)2023 Jan 25.
Artículo en Inglés | MEDLINE | ID: mdl-36770057

RESUMEN

Additive manufacturing is a modern technique to produce parts with a complex geometry. However, the choice of the printing parameters is a time-consuming and costly process. In this study, the parameter optimization for the laser powder bed fusion process was investigated. Using state-of-the art multi-objective Bayesian optimization, the set of the most-promising process parameters (laser power, scanning speed, hatch distance, etc.), which would yield parts with the desired hardness and porosity, was established. The Gaussian process surrogate model was built on 57 empirical data points, and through efficient sampling in the design space, we were able to obtain three points in the Pareto front in just over six iterations. The produced parts had a hardness ranging from 224-235 HV and a porosity in the range of 0.2-0.37%. The trained model recommended using the following parameters for high-quality parts: 58 W, 257 mm/s, 45 µm, with a scan rotation angle of 131 degrees. The proposed methodology greatly reduces the number of experiments, thus saving time and resources. The candidate process parameters prescribed by the model were experimentally validated and tested.

5.
Micron ; 166: 103399, 2023 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-36634433

RESUMEN

High-entropy alloys (HEAs) are promoted as promising materials for various applications, including those dealing with high-temperatures. It requires understanding of the oxidation at different temperatures, especially for such a technological process as additive manufacturing (AM), which is able to produce unique structure. The present work evaluates the oxidation resistance of the CrFeCoNiAl HEAs produced by AM of the blends of CrFeCoNi and Al powders at temperatures of 800 and 1000 â„ƒ. Al forms the Al2O3 under the top Cr2O3 layer and prevents the delamination of the oxide scale at considered temperatures. Oxygen diffusion mainly occurs homogeneously through the columnar grain boundaries typical for AM materials. AlN precipitates under the Al2O3 formations were observed for the sample with the highest aluminium concentration due to dissolution of nitrogen in the as-built material.

6.
Nanomaterials (Basel) ; 13(13)2023 Jun 30.
Artículo en Inglés | MEDLINE | ID: mdl-37446499

RESUMEN

Extraordinary properties of two-dimensional materials make them attractive for applications in different fields. One of the prospective niches is optical applications, where such types of materials demonstrate extremely sensitive performance and can be used for labeling. However, the optical properties of liquid-exfoliated 2D materials need to be analyzed. The purpose of this work is to study the absorption and luminescent properties of MoS2 exfoliated in the presence of sodium cholate, which is the most often used surfactant. Ultrasound bath and mixer-assisted exfoliation in water and dimethyl sulfoxide were used. The best quality of MoS2 nanosheets was achieved using shear-assisted liquid-phase exfoliation as a production method and sodium cholate (SC) as a surfactant. The photoluminescent properties of MoS2 nanosheets varied slightly when changing the surfactant concentrations in the range C(SC) = 0.5-2.5 mg/mL. This work is of high practical importance for further enhancement of MoS2 photoluminescent properties via chemical functionalization.

7.
Materials (Basel) ; 16(11)2023 Jun 05.
Artículo en Inglés | MEDLINE | ID: mdl-37297329

RESUMEN

Dental implants are thought to be implanted for life, but throughout their lifespan, they function in aggressive oral environment, resulting in corrosion of the material itself as well as possible inflammation of adjacent tissues. Therefore, materials and oral products for people with metallic intraoral appliances must be chosen carefully. The purpose of this study was to investigate the corrosion behavior of common titanium and cobalt-chromium alloys in interaction with various dry mouth products using electrochemical impedance spectroscopy (EIS). The study showed that different dry mouth products lead to different open circuit potentials, corrosion voltages, and currents. The corrosion potentials of Ti64 and CoCr ranged from -0.3 to 0 V and -0.67 to 0.7 V, respectively. In contrast to titanium, pitting corrosion was observed for the cobalt-chromium alloy, leading to the release of Co and Cr ions. Based on the results, it can be argued that the commercially available dry mouth remedies are more favorable for dental alloys in terms of corrosion compared to Fusayama Meyer's artificial saliva. Thus, to prevent undesirable interactions, the individual characteristics of not only the composition of each patient's tooth and jaw structure, but also the materials already used in their oral cavity and oral hygiene products, must be taken into account.

8.
J Biomed Opt ; 28(5): 057002, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-37193365

RESUMEN

Significance: Edema occurs in the course of various skin diseases. It manifests itself in changes in water concentrations in skin layers: dermis and hypodermis and their thicknesses. In medicine and cosmetology, objective tools are required to assess the skin's physiological parameters. The dynamics of edema and the skin of healthy volunteers were studied using spatially resolved diffuse reflectance spectroscopy (DRS) in conjunction with ultrasound (US). Aim: In this work, we have developed a method based on DRS with a spatial resolution (SR DRS), allowing us to simultaneously assess water content in the dermis, dermal thickness, and hypodermal thickness. Approach: An experimental investigation of histamine included edema using SR DRS under the control of US was conducted. An approach for skin parameter determination was studied and confirmed using Monte-Carlo simulation of diffuse reflectance spectra for a three-layered system with the varying dermis and hypodermis parameters. Results: It was shown that an interfiber distance of 1 mm yields a minimal relative error of water content determination in the dermis equal to 9.3%. The lowest error of hypodermal thickness estimation was achieved with the interfiber distance of 10 mm. Dermal thickness for a group of volunteers (7 participants, 21 measurement sites) was determined using SR DRS technique with an 8.3% error using machine learning approaches, taking measurements at multiple interfiber distances into account. Hypodermis thickness was determined with root mean squared error of 0.56 mm for the same group. Conclusions: This study demonstrates that measurement of the skin diffuse reflectance response at multiple distances makes it possible to determine the main parameters of the skin and will serve as the basis for the development and verification of an approach that works in a wide range of skin structure parameters.


Asunto(s)
Edema , Piel , Humanos , Piel/diagnóstico por imagen , Piel/química , Análisis Espectral/métodos , Simulación por Computador , Método de Montecarlo
9.
Polymers (Basel) ; 15(5)2023 Feb 28.
Artículo en Inglés | MEDLINE | ID: mdl-36904455

RESUMEN

The efficiency of electronic microchip-based devices increases with advancements in technology, while their size decreases. This miniaturization leads to significant overheating of various electronic components, such as power transistors, processors, and power diodes, leading to a reduction in their lifespan and reliability. To address this issue, researchers are exploring the use of materials that offer efficient heat dissipation. One promising material is a polymer-boron nitride composite. This paper focuses on 3D printing using digital light processing of a model of a composite radiator with different boron nitride fillings. The measured absolute values of the thermal conductivity of such a composite in the temperature range of 3-300 K strongly depend on the concentration of boron nitride. Filling the photopolymer with boron nitride leads to a change in the behavior of the volt-current curves, which may be associated with the occurrence of percolation currents during the deposition of boron nitride. The ab initio calculations show the behavior and spatial orientation of BN flakes under the influence of an external electric field at the atomic level. These results demonstrate the potential use of photopolymer-based composite materials filled with boron nitride, which are manufactured using additive techniques, in modern electronics.

10.
Biomimetics (Basel) ; 8(1)2023 Mar 22.
Artículo en Inglés | MEDLINE | ID: mdl-36975359

RESUMEN

In surgical dentistry, suture material is the only foreign body that remains in the tissues after surgery, and it can lead to several negative reactions, for example, infection of the wound. The purpose of this study was to compare the mechanical properties and microbiological resistance of mono- and polyfilament suture materials used in tooth extraction operations. The study of elongation and knot force was carried out on an Instron 5969 Dual Column Testing System device. The capillarity of the materials was studied on a setup assembled by the authors manually by immersing the ends of the filaments in a colored manganese solution. A microbiological study was carried out on the threads taken for the experiment immediately after wound suturing, and on day 7, at which time they were removed. The comparison was made according to Rothia mucilaginosa, Streptococcus sanguinis, Staphylococcus epidermidis. Results: monofilament suture materials (Prolene and Glycolon), after calculating the Kruskal-Wallis and Mann-Whitney indices, showed better performance in all experiments compared to polyfilament sutures (Vicryl and PGA). In capillarity comparison, there was a significant difference between groups (p = 0.00018). According to the sum of the results of three microbiological studies on day 7, monofilament suture materials absorbed less of the studied bacteria on their surface compared to the polyfilament ones (p < 0.05). Conclusions: Of the studied suture materials, Prolene had the best microbiological resistance and good mechanical properties.

11.
J Biophotonics ; 16(3): e202200149, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36066126

RESUMEN

Osteoarthritis (OA) is one of the most common joint diseases worldwide. Unfortunately, clinical methods lack the ability to detect OA in the early stages. Timely detection of the knee joint degradation at the level of tissue changes can prevent its progressive damage. Here, diffuse reflectance spectroscopy (DRS) in the NIR range was used to obtain optical markers of the cartilage damage grades and to assess its mechanical properties. It was observed that the water content obtained by DRS strongly correlates with the cartilage thickness (R = .82) and viscoelastic relaxation time (R = .7). Moreover, the spectral parameters, including water content (OH-band), protein content (CH-band), and scattering parameters allowed for discrimination between the cartilage damage grades (10-4 < P ≤ 10-3 ). The developed approach may become a valuable addition to arthroscopy, helping to identify lesions at the microscopic level in the early stages of OA and complement the surgical analysis.


Asunto(s)
Cartílago Articular , Osteoartritis , Humanos , Cartílago Articular/patología , Osteoartritis/patología , Articulación de la Rodilla/patología , Análisis Espectral , Agua
12.
Nanomaterials (Basel) ; 12(6)2022 Mar 18.
Artículo en Inglés | MEDLINE | ID: mdl-35335811

RESUMEN

Electrospinning is a well-established method for the fabrication of polymer biomaterials, including those with core-shell nanofibers. The variability of structures presents a great range of opportunities in tissue engineering and drug delivery by incorporating biologically active molecules such as drugs, proteins, and growth factors and subsequent control of their release into the target microenvironment to achieve therapeutic effect. The object of study is non-woven core-shell PVA-PEG-SiO2@PVA-GO fiber mats assembled by the technology of coaxial electrospinning. The task of the core-shell fiber development was set to regulate the degradation process under external factors. The dual structure was modified with silica nanoparticles and graphene oxide to ensure the fiber integrity and stability. The influence of the nano additives and crosslinking conditions for the composite was investigated as a function of fiber diameter, hydrolysis, and mechanical properties. Tensile mechanical tests and water degradation tests were used to reveal the fracture and dissolution behavior of the fiber mats and bundles. The obtained fibers were visualized by confocal fluorescence microscopy to confirm the continuous core-shell structure and encapsulation feasibility for biologically active components, selectively in the fiber core and shell. The results provide a firm basis to draw the conclusion that electrospun core-shell fiber mats have tremendous potential for biomedical applications as drug carriers, photocatalysts, and wound dressings.

13.
Materials (Basel) ; 14(18)2021 Sep 09.
Artículo en Inglés | MEDLINE | ID: mdl-34576411

RESUMEN

The superimposed magnetic field affects the microstructure and mechanical properties of additively manufactured metal parts. In this work, the samples were fabricated from Inconel 718 superalloy by directed energy deposition under a 0.2 T static field. The magnetohydrodynamic 1D model is proposed for the estimation of a fluid flow inside a molten pool. According to the theoretical predictions, the fluid flow is slightly decreased by an applied field. The estimated thermoelectric magnetic convection in the mushy zone is shown to be negligible to change in subgrain size, but enough to reduce the hard-to-dissolve Nb-rich phase, thereby improving the average ultimate elongation from 23% to 27%. The obtained results confirm that an external static magnetic field can modify and enhance the mechanical properties of additively manufactured materials.

14.
Polymers (Basel) ; 12(12)2020 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-33333758

RESUMEN

There are more than 50 families of dendrimers, and some of which, such as polyamidoamine PAMAM, are well studied, and some are just starting to attract the attention of researchers. One promising type of dendrimers is sulfonimide-based dendrimers (SBDs). To date, SBDs are used in organic synthesis as starting reagents for the convergent synthesis of higher generations dendrimers, in materials science as alternative electrolyte solutions for fuel cells, and in medicinal chemistry as potential substances for drug transfer procedures. Despite the fact that most dendrimers are amorphous substances among the SBDs, several structures are distinguished that are prone to the formation of crystalline solids with melting points in the range of 120-250 °C. Similar to those of other dendrimers, the chemical and physical properties of SBDs depend on their outer shell, which is formed by functional groups. To date, SBDs decorated with end groups such as naphthyl, nitro, methyl, and methoxy have been successfully synthesized, and each of these groups gives the dendrimers specific properties. Analysis of the structure of SBD, their synthesis methods, and applications currently available in the literature reveals that these dendrimers have not yet been fully explored.

15.
J Phys Chem Lett ; 11(10): 3821-3827, 2020 May 21.
Artículo en Inglés | MEDLINE | ID: mdl-32330050

RESUMEN

NaCl is one of the simplest compounds and was thought to be well-understood, and yet, unexpected complexities related to it were uncovered at high pressure and in low-dimensional states. Here, exotic hexagonal NaCl thin films on the (110) diamond surface were crystallized in the experiment following a theoretical prediction based on ab initio evolutionary algorithm USPEX. State-of-the-art calculations and experiments showed the existence of a hexagonal NaCl thin film, which is due to the strong chemical interaction of the NaCl film with the diamond substrate.

16.
Materials (Basel) ; 14(1)2020 Dec 29.
Artículo en Inglés | MEDLINE | ID: mdl-33383901

RESUMEN

The particle size distribution significantly affects the material properties of the additively manufactured parts. In this work, the influence of bimodal powder containing nano- and micro-scale particles on microstructure and materials properties is studied. Moreover, to study the effect of the protective atmosphere, the test samples were additively manufactured from 316L stainless steel powder in argon and nitrogen. The samples fabricated from the bimodal powder demonstrate a finer subgrain structure, regardless of protective atmospheres and an increase in the Vickers microhardness, which is in accordance with the Hall-Petch relation. The porosity analysis revealed the deterioration in the quality of as-built parts due to the poor powder flowability. The surface roughness of fabricated samples was the same regardless of the powder feedstock materials used and protective atmospheres. The results suggest that the improvement of mechanical properties is achieved by adding a nano-dispersed fraction, which dramatically increases the total surface area, thereby contributing to the nitrogen absorption by the material.

17.
Sci Rep ; 9(1): 6716, 2019 Apr 30.
Artículo en Inglés | MEDLINE | ID: mdl-31040328

RESUMEN

Cycling stability and specific capacitance are the most critical features of energy sources. Nitrogen incorporation in crystalline carbon lattice allows to increase the capacitance without increasing the mass of electrodes. Despite the fact that many studies demonstrate the increase in the capacitance of energy sources after nitrogen incorporation, the mechanism capacitance increase is still unclear. Herein, we demonstrate the simple approach of plasma treatment of carbon structures, which leads to incorporation of 3 at.% nitrogen into Carbon NanoWalls. These structures have huge specific surface area and can be used for supercapacitor fabrication. After plasma treatment, the specific capacitance of Carbon NanoWalls increased and reached 600 F g-1. Moreover, we made a novel DFT simulation which explains the mechanism of nitrogen incorporation into the carbon lattice. This work paves the way to develop flexible thin film supercapacitors based on carbon nanowalls.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA