Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
Intervalo de año de publicación
1.
Development ; 146(4)2019 02 28.
Artículo en Inglés | MEDLINE | ID: mdl-30745426

RESUMEN

Sesamoid bones are small auxiliary bones that form near joints and contribute to their stability and function. Thus far, providing a comprehensive developmental model or classification system for this highly diverse group of bones has been challenging. Here, we compare our previously reported mechanisms of patella development in the mouse with those of two anatomically different sesamoids, namely lateral fabella and digit sesamoids. We show that all three types of sesamoid bones originate from Sox9+ /Scx+ progenitors under the regulation of TGFß and independently of mechanical stimuli from muscles. Whereas BMP2 regulates the growth of all examined sesamoids, the differentiation of lateral fabella or digit sesamoids is regulated redundantly by BMP4 and BMP2. Next, we show that whereas patella and digit sesamoids initially form in juxtaposition to long bones, lateral fabella forms independently and at a distance. Finally, our evidence suggests that, unlike the synovial joint that separates patella from femur, digit sesamoids detach from the phalanx by formation of a fibrocartilaginous joint. These findings highlight both common and divergent molecular and mechanical features of sesamoid bone development, which underscores their evolutionary plasticity.


Asunto(s)
Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/genética , Músculos/embriología , Factor de Transcripción SOX9/genética , Huesos Sesamoideos/embriología , Huesos Sesamoideos/crecimiento & desarrollo , Factor de Crecimiento Transformador beta/metabolismo , Animales , Evolución Biológica , Proteína Morfogenética Ósea 2/metabolismo , Proteína Morfogenética Ósea 4/metabolismo , Cartílago/metabolismo , Linaje de la Célula , Femenino , Fémur/metabolismo , Fibrocartílago/metabolismo , Heterocigoto , Masculino , Ratones , Ratones Endogámicos C57BL , Músculos/metabolismo , Rótula/embriología , Rótula/crecimiento & desarrollo , Huesos Sesamoideos/citología , Transducción de Señal , Estrés Mecánico , Líquido Sinovial/metabolismo
2.
Development ; 146(14)2019 07 26.
Artículo en Inglés | MEDLINE | ID: mdl-31221640

RESUMEN

Bone protrusions provide stable anchoring sites for ligaments and tendons and define the unique morphology of each long bone. Despite their importance, the mechanism by which superstructures are patterned is unknown. Here, we identify components of the genetic program that control the patterning of Sox9+/Scx+ superstructure progenitors in mouse and show that this program includes both global and regional regulatory modules. Using light-sheet fluorescence microscopy combined with genetic lineage labeling, we mapped the broad contribution of the Sox9+/Scx+ progenitors to the formation of bone superstructures. Then, by combining literature-based evidence, comparative transcriptomic analysis and genetic mouse models, we identified Gli3 as a global regulator of superstructure patterning, whereas Pbx1, Pbx2, Hoxa11 and Hoxd11 act as proximal and distal regulators, respectively. Moreover, by demonstrating a dose-dependent pattern regulation in Gli3 and Pbx1 compound mutations, we show that the global and regional regulatory modules work in a coordinated manner. Collectively, our results provide strong evidence for genetic regulation of superstructure patterning, which further supports the notion that long bone development is a modular process.This article has an associated 'The people behind the papers' interview.


Asunto(s)
Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/genética , Huesos/anatomía & histología , Huesos/embriología , Genes del Desarrollo , Proteínas de Homeodominio/genética , Animales , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo , Desarrollo Óseo/genética , Huesos/metabolismo , Embrión de Mamíferos , Femenino , Regulación del Desarrollo de la Expresión Génica/fisiología , Genes del Desarrollo/genética , Proteínas de Homeodominio/metabolismo , Ligamentos/anatomía & histología , Ligamentos/embriología , Ligamentos/metabolismo , Masculino , Ratones , Ratones Transgénicos , Especificidad de Órganos/genética , Factor de Transcripción 1 de la Leucemia de Células Pre-B/genética , Factor de Transcripción 1 de la Leucemia de Células Pre-B/metabolismo , Embarazo , Factor de Transcripción SOX9/genética , Factor de Transcripción SOX9/metabolismo , Tendones/anatomía & histología , Tendones/embriología , Tendones/metabolismo
3.
Development ; 142(10): 1831-9, 2015 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-25926361

RESUMEN

The current view of skeletal patterning fails to explain the formation of sesamoid bones. These small bones, which facilitate musculoskeletal function, are exceptionally embedded within tendons. Although their structural design has long puzzled researchers, only a limited model for sesamoid bone development has emerged. To date, sesamoids are thought to develop inside tendons in response to mechanical signals from the attaching muscles. However, this widely accepted model has lacked substantiation. Here, we show that, contrary to the current view, in the mouse embryo the patella initially develops as a bony process at the anteriodistal surface of the femur. Later, the patella is separated from the femur by a joint formation process that is regulated by mechanical load. Concurrently, the patella becomes superficially embedded within the quadriceps tendon. At the cellular level, we show that, similar to bone eminences, the patella is formed secondarily by a distinct pool of Sox9- and Scx-positive progenitor cells. Finally, we show that TGFß signaling is necessary for the specification of patella progenitors, whereas the BMP4 pathway is required for their differentiation. These findings establish an alternative model for patella development and provide the mechanical and molecular mechanisms that underlie this process. More broadly, our finding that activation of a joint formation program can be used to switch between the formation of bony processes and of new auxiliary bones provides a new perspective on plasticity during skeletal patterning and evolution.


Asunto(s)
Articulaciones/embriología , Articulaciones/metabolismo , Rótula/embriología , Rótula/metabolismo , Huesos Sesamoideos/embriología , Huesos Sesamoideos/metabolismo , Animales , Proteína Morfogenética Ósea 4/metabolismo , Diferenciación Celular/fisiología , Hibridación in Situ , Articulaciones/citología , Ratones , Ratones Mutantes , Ratones Transgénicos , Morfogénesis/genética , Morfogénesis/fisiología , Rótula/citología , Reacción en Cadena en Tiempo Real de la Polimerasa , Huesos Sesamoideos/citología , Células Madre/citología , Células Madre/metabolismo
4.
Elife ; 122023 09 11.
Artículo en Inglés | MEDLINE | ID: mdl-37695317

RESUMEN

Development of the dorsal aorta is a key step in the establishment of the adult blood-forming system, since hematopoietic stem and progenitor cells (HSPCs) arise from ventral aortic endothelium in all vertebrate animals studied. Work in zebrafish has demonstrated that arterial and venous endothelial precursors arise from distinct subsets of lateral plate mesoderm. Here, we profile the transcriptome of the earliest detectable endothelial cells (ECs) during zebrafish embryogenesis to demonstrate that tissue-specific EC programs initiate much earlier than previously appreciated, by the end of gastrulation. Classic studies in the chick embryo showed that paraxial mesoderm generates a subset of somite-derived endothelial cells (SDECs) that incorporate into the dorsal aorta to replace HSPCs as they exit the aorta and enter circulation. We describe a conserved program in the zebrafish, where a rare population of endothelial precursors delaminates from the dermomyotome to incorporate exclusively into the developing dorsal aorta. Although SDECs lack hematopoietic potential, they act as a local niche to support the emergence of HSPCs from neighboring hemogenic endothelium. Thus, at least three subsets of ECs contribute to the developing dorsal aorta: vascular ECs, hemogenic ECs, and SDECs. Taken together, our findings indicate that the distinct spatial origins of endothelial precursors dictate different cellular potentials within the developing dorsal aorta.


Asunto(s)
Hemangioblastos , Pez Cebra , Embrión de Pollo , Animales , Arterias , Células Madre Hematopoyéticas , Aorta
5.
Dis Model Mech ; 9(11): 1257-1269, 2016 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-27491074

RESUMEN

In the vertebrate limb over 40 muscles are arranged in a precise pattern of attachment via muscle connective tissue and tendon to bone and provide an extensive range of motion. How the development of somite-derived muscle is coordinated with the development of lateral plate-derived muscle connective tissue, tendon and bone to assemble a functional limb musculoskeletal system is a long-standing question. Mutations in the T-box transcription factor, TBX3, have previously been identified as the genetic cause of ulnar-mammary syndrome (UMS), characterized by distinctive defects in posterior forelimb bones. Using conditional mutagenesis in mice, we now show that TBX3 has a broader role in limb musculoskeletal development. TBX3 is not only required for development of posterior forelimb bones (ulna and digits 4 and 5), but also for a subset of posterior muscles (lateral triceps and brachialis) and their bone eminence attachment sites. TBX3 specification of origin and insertion sites appears to be tightly linked with whether these particular muscles develop and may represent a newly discovered mechanism for specification of anatomical muscles. Re-examination of an individual with UMS reveals similar previously unrecognized muscle and bone eminence defects and indicates a conserved role for TBX3 in regulating musculoskeletal development.


Asunto(s)
Anomalías Múltiples/patología , Enfermedades de la Mama/patología , Miembro Anterior/patología , Músculos/patología , Proteínas de Dominio T Box/genética , Cúbito/anomalías , Animales , Linaje de la Célula , Femenino , Regulación del Desarrollo de la Expresión Génica , Humanos , Masculino , Mesodermo/embriología , Mesodermo/metabolismo , Ratones Endogámicos C57BL , Fibras Musculares Esqueléticas/patología , Olécranon/patología , Proteínas de Dominio T Box/metabolismo , Tendones/patología , Cúbito/patología
6.
Dev Cell ; 26(5): 544-51, 2013 Sep 16.
Artículo en Inglés | MEDLINE | ID: mdl-24044893

RESUMEN

The muscles that govern hand motion are composed of extrinsic muscles that reside within the forearm and intrinsic muscles that reside within the hand. We find that the extrinsic muscles of the flexor digitorum superficialis (FDS) first differentiate as intrinsic muscles within the hand and then relocate as myofibers to their final position in the arm. This remarkable translocation of differentiated myofibers across a joint is dependent on muscle contraction and muscle-tendon attachment. Interestingly, the intrinsic flexor digitorum brevis (FDB) muscles of the foot are identical to the FDS in tendon pattern and delayed developmental timing but undergo limited muscle translocation, providing strong support for evolutionary homology between the FDS and FDB muscles. We propose that the intrinsic FDB pattern represents the original tetrapod limb and that translocation of the muscles to form the FDS is a mammalian evolutionary addition.


Asunto(s)
Miembro Anterior/crecimiento & desarrollo , Movimiento/fisiología , Músculos/fisiología , Tendones/crecimiento & desarrollo , Animales , Pie/anatomía & histología , Pie/fisiología , Miembro Anterior/anatomía & histología , Miembro Posterior/anatomía & histología , Miembro Posterior/crecimiento & desarrollo , Humanos , Ratones , Contracción Muscular/fisiología , Tendones/anatomía & histología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA