Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
J Biotechnol ; 119(3): 219-44, 2005 Sep 29.
Artículo en Inglés | MEDLINE | ID: mdl-16005536

RESUMEN

Successful drug discovery requires accurate decision making in order to advance the best candidates from initial lead identification to final approval. Chemogenomics, the use of genomic tools in pharmacology and toxicology, offers a promising enhancement to traditional methods of target identification/validation, lead identification, efficacy evaluation, and toxicity assessment. To realize the value of chemogenomics information, a contextual database is needed to relate the physiological outcomes induced by diverse compounds to the gene expression patterns measured in the same animals. Massively parallel gene expression characterization coupled with traditional assessments of drug candidates provides additional, important mechanistic information, and therefore a means to increase the accuracy of critical decisions. A large-scale chemogenomics database developed from in vivo treated rats provides the context and supporting data to enhance and accelerate accurate interpretation of mechanisms of toxicity and pharmacology of chemicals and drugs. To date, approximately 600 different compounds, including more than 400 FDA approved drugs, 60 drugs approved in Europe and Japan, 25 withdrawn drugs, and 100 toxicants, have been profiled in up to 7 different tissues of rats (representing over 3200 different drug-dose-time-tissue combinations). Accomplishing this task required evaluating and improving a number of in vivo and microarray protocols, including over 80 rigorous quality control steps. The utility of pairing clinical pathology assessments with gene expression data is illustrated using three anti-neoplastic drugs: carmustine, methotrexate, and thioguanine, which had similar effects on the blood compartment, but diverse effects on hepatotoxicity. We will demonstrate that gene expression events monitored in the liver can be used to predict pathological events occurring in that tissue as well as in hematopoietic tissues.


Asunto(s)
Biotecnología/métodos , Diseño de Fármacos , Industria Farmacéutica/métodos , 5-Aminolevulinato Sintetasa/biosíntesis , Animales , Antineoplásicos/farmacología , Antineoplásicos/toxicidad , Automatización , Conductos Biliares/patología , Carmustina/toxicidad , Biología Computacional , Bases de Datos como Asunto , Relación Dosis-Respuesta a Droga , Regulación hacia Abajo , Expresión Génica , Humanos , Hiperplasia/etiología , Hígado/efectos de los fármacos , Masculino , Metotrexato/toxicidad , Hibridación de Ácido Nucleico , Análisis de Secuencia por Matrices de Oligonucleótidos , Tamaño de los Órganos , Farmacología/métodos , ARN/química , ARN Complementario/metabolismo , Ratas , Ratas Sprague-Dawley , Reticulocitos/citología , Reticulocitos/metabolismo , Tioguanina/toxicidad , Factores de Tiempo , Distribución Tisular , Toxicología/métodos
2.
J Neuroimmunol ; 132(1-2): 99-112, 2002 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-12417439

RESUMEN

Using GeneChips, basal and lipopolysaccharide (LPS)-induced gene expression was examined in the hippocampus of 3-, 12-, 18- and 24-month-old male C57BL/6 mice to identify genes whose altered expression could influence hippocampal function in advanced age. Gene elements that changed with age were selected with a t-statistic and specific expression patterns were confirmed with real-time quantitative PCR. Basal expression of 128 gene elements clearly changed with age in the hippocampus. Fourteen gene elements showed increased expression with age and these increases were validated after LPS stimulation. Major histocompatibility complex (MHC) TL region and thymic shared antigen (TSA-1) gene expression increased, suggesting T cell activation in the hippocampus with age. Cytokine (interleukin (IL)-1beta, tumor necrosis factor (TNF)-alpha) and chemokine (macrophage chemotactic protein-1) expression increased sharply in 24-month-old mice. These findings are in contrast to a decrease in the peripheral immune response, documented by decreased T cell proliferation and decreased ratios of naive to memory T cells. Age-related increases in inflammatory potential in the brain may contribute to neurodegenerative diseases of the aged.


Asunto(s)
Envejecimiento/inmunología , Regulación de la Expresión Génica , Genes MHC Clase II , Hipocampo/metabolismo , Animales , Antígenos de Protozoos/genética , Apolipoproteínas E/genética , Complemento C1q/genética , Lipopolisacáridos/farmacología , Masculino , Ratones , Ratones Endogámicos C57BL , Análisis de Secuencia por Matrices de Oligonucleótidos , Glicoproteínas Variantes de Superficie de Trypanosoma/genética
3.
Toxicol Pathol ; 33(6): 675-83, 2005.
Artículo en Inglés | MEDLINE | ID: mdl-16239200

RESUMEN

One application of genomics in drug safety assessment is the identification of biomarkers to predict compound toxicity before it is detected using traditional approaches, such as histopathology. However, many genomic approaches have failed to demonstrate superiority to traditional methods, have not been appropriately validated on external samples, or have been derived using small data sets, thus raising concerns of their general applicability. Using kidney gene expression profiles from male SD rats treated with 64 nephrotoxic or non-nephrotoxic compound treatments, a gene signature consisting of only 35 genes was derived to predict the future development of renal tubular degeneration weeks before it appears histologically following short-term test compound administration. By comparison, histopathology or clinical chemistry fails to predict the future development of tubular degeneration, thus demonstrating the enhanced sensitivity of gene expression relative to traditional approaches. In addition, the performance of the signature was validated on 21 independent compound treatments structurally distinct from the training set. The signature correctly predicted the ability of test compounds to induce tubular degeneration 76% of the time, far better than traditional approaches. This study demonstrates that genomic data can be more sensitive than traditional methods for the early prediction of compound-induced pathology in the kidney.


Asunto(s)
Efectos Colaterales y Reacciones Adversas Relacionados con Medicamentos/genética , Marcadores Genéticos , Enfermedades Renales/genética , Túbulos Renales/metabolismo , Pruebas de Toxicidad/métodos , Animales , Efectos Colaterales y Reacciones Adversas Relacionados con Medicamentos/sangre , Efectos Colaterales y Reacciones Adversas Relacionados con Medicamentos/metabolismo , Predicción , Perfilación de la Expresión Génica , Genómica/métodos , Enfermedades Renales/sangre , Enfermedades Renales/inducido químicamente , Enfermedades Renales/metabolismo , Túbulos Renales/efectos de los fármacos , Túbulos Renales/patología , Masculino , Ratas , Ratas Sprague-Dawley , Reproducibilidad de los Resultados , Factores de Tiempo
4.
Genome Res ; 15(5): 724-36, 2005 May.
Artículo en Inglés | MEDLINE | ID: mdl-15867433

RESUMEN

A large gene expression database has been produced that characterizes the gene expression and physiological effects of hundreds of approved and withdrawn drugs, toxicants, and biochemical standards in various organs of live rats. In order to derive useful biological knowledge from this large database, a variety of supervised classification algorithms were compared using a 597-microarray subset of the data. Our studies show that several types of linear classifiers based on Support Vector Machines (SVMs) and Logistic Regression can be used to derive readily interpretable drug signatures with high classification performance. Both methods can be tuned to produce classifiers of drug treatments in the form of short, weighted gene lists which upon analysis reveal that some of the signature genes have a positive contribution (act as "rewards" for the class-of-interest) while others have a negative contribution (act as "penalties") to the classification decision. The combination of reward and penalty genes enhances performance by keeping the number of false positive treatments low. The results of these algorithms are combined with feature selection techniques that further reduce the length of the drug signatures, an important step towards the development of useful diagnostic biomarkers and low-cost assays. Multiple signatures with no genes in common can be generated for the same classification end-point. Comparison of these gene lists identifies biological processes characteristic of a given class.


Asunto(s)
Algoritmos , Clasificación/métodos , Regulación de la Expresión Génica , Análisis de Secuencia por Matrices de Oligonucleótidos/métodos , Análisis de Secuencia por Matrices de Oligonucleótidos/normas , Preparaciones Farmacéuticas/metabolismo , ARN Mensajero/aislamiento & purificación , Animales , Médula Ósea/metabolismo , Relación Dosis-Respuesta a Droga , Riñón/metabolismo , Hígado/metabolismo , Modelos Logísticos , Masculino , Miocardio/metabolismo , Análisis de Componente Principal , Ratas , Ratas Sprague-Dawley , Reproducibilidad de los Resultados
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA