Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
1.
Chembiochem ; 24(12): e202300192, 2023 06 15.
Artículo en Inglés | MEDLINE | ID: mdl-37150743

RESUMEN

Enzyme engineering aims to improve or install a new function in biocatalysts for applications ranging from chemical synthesis to biomedicine. For decades, computational techniques have been developed to predict the effect of protein changes and design new enzymes. However, these techniques may have been optimized to deal with proteins composed of the standard amino acid alphabet, while the function of many enzymes relies on non-proteogenic parts like cofactors, nucleic acids, and post-translational modifications. Enzyme systems containing such molecules might be handled or modeled improperly by computational tools, and thus be unsuitable, or require additional tweaking, parameterization, or preparation. In this review, we give an overview of common and recent tools and workflows available to computational enzyme engineers. We highlight the various pitfalls that come with including non-proteogenic compounds in computations and outline potential ways to address common issues. Finally, we showcase successful examples from the literature that computationally engineered such enzymes.


Asunto(s)
Ingeniería de Proteínas , Proteínas , Ingeniería de Proteínas/métodos , Aminoácidos/química , Enzimas/metabolismo , Biología Computacional
2.
Biotechnol Bioeng ; 116(9): 2167-2177, 2019 09.
Artículo en Inglés | MEDLINE | ID: mdl-31124128

RESUMEN

Enzymes often by far exceed the activity, selectivity, and sustainability achieved with chemical catalysts. One of the main reasons for the lack of biocatalysis in the chemical industry is the poor stability exhibited by many enzymes when exposed to process conditions. This dilemma is exemplified in the usually very temperature-sensitive enzymes catalyzing the Baeyer-Villiger reaction, which display excellent stereo- and regioselectivity and offer a green alternative to the commonly used, explosive peracids. Here we describe a protein engineering approach applied to cyclohexanone monooxygenase from Rhodococcus sp. HI-31, a substrate-promiscuous enzyme that efficiently catalyzes the production of the nylon-6 precursor ε-caprolactone. We used a framework for rapid enzyme stabilization by computational libraries (FRESCO), which predicts protein-stabilizing mutations. From 128 screened point mutants, approximately half had a stabilizing effect, albeit mostly to a small degree. To overcome incompatibility effects observed upon combining the best hits, an easy shuffled library design strategy was devised. The most stable and highly active mutant displayed an increase in unfolding temperature of 13°C and an approximately 33x increase in half-life at 30°C. In contrast to the wild-type enzyme, this thermostable 8x mutant is an attractive biocatalyst for biotechnological applications.


Asunto(s)
Proteínas Bacterianas , Mutación , Oxigenasas , Biblioteca de Péptidos , Rhodococcus , Proteínas Bacterianas/química , Proteínas Bacterianas/genética , Biología Computacional , Estabilidad de Enzimas/genética , Oxigenasas/química , Oxigenasas/genética , Rhodococcus/enzimología , Rhodococcus/genética
3.
J Am Chem Soc ; 140(33): 10464-10472, 2018 08 22.
Artículo en Inglés | MEDLINE | ID: mdl-30044629

RESUMEN

Controlling the regioselectivity of Baeyer-Villiger (BV) reactions remains an ongoing issue in organic chemistry, be it by synthetic catalysts or enzymes of the type Baeyer-Villiger monooxygenases (BVMOs). Herein, we address the challenging problem of switching normal to abnormal BVMO regioselectivity by directed evolution using three linear ketones as substrates, which are not structurally biased toward abnormal reactivity. Upon applying iterative saturation mutagenesis at sites lining the binding pocket of the thermostable BVMO from Thermocrispum municipale DSM 44069 (TmCHMO) and using 4-phenyl-2-butanone as substrate, the regioselectivity was reversed from 99:1 (wild-type enzyme in favor of the normal product undergoing 2-phenylethyl migration) to 2:98 in favor of methyl migration when applying the best mutant. This also stands in stark contrast to the respective reaction using the synthetic reagent m-CPBA, which provides solely the normal product. Reversal of regioselectivity was also achieved in the BV reaction of two other linear ketones. Kinetic parameters and melting temperatures revealed that most of the evolved mutants retained catalytic activity, as well as thermostability. In order to shed light on the origin of switched regioselectivity in reactions of 4-phenyl-2-butanone and phenylacetone, extensive QM/MM and MD simulations were performed. It was found that the mutations introduced by directed evolution induce crucial changes in the conformation of the respective Criegee intermediates and transition states in the binding pocket of the enzyme. In mutants that destabilize the normally preferred migration transition state, a reversal of regioselectivity is observed. This conformational control of regioselectivity overrides electronic control, which normally causes preferential migration of the group that is best able to stabilize positive charge. The results can be expected to aid future protein engineering of BVMOs.


Asunto(s)
Biocatálisis , Evolución Molecular Dirigida , Cinética , Ingeniería de Proteínas
4.
Chembiochem ; 19(4): 354-360, 2018 02 16.
Artículo en Inglés | MEDLINE | ID: mdl-29078017

RESUMEN

Baeyer-Villiger monooxygenases (BVMOs) are biocatalysts that are able to convert cyclic ketones into lactones by the insertion of oxygen. The aim of this study was to explore the substrate scope of several BVMOs with (biobased) cyclic ketones as precursors for the synthesis of branched polyesters. The product structure and the degree of conversion of several biotransformations were determined after conversions by using self-sufficient BVMOs. Full regioselectivity towards the normal lactones of jasmatone and menthone was observed, whereas the oxidation of other substrates such as α,ß-thujone and 3,3,5-trimethylcyclohexanone resulted in mixtures of regioisomers. This exploration of the substrate scope of both established and newly discovered BVMOs towards biobased ketones contributes to the development of branched polyesters from renewable resources.


Asunto(s)
Lactonas/metabolismo , Oxigenasas de Función Mixta/metabolismo , Poliésteres/metabolismo , Estabilidad de Enzimas , Cromatografía de Gases y Espectrometría de Masas , Lactonas/química , Oxigenasas de Función Mixta/química , Estructura Molecular , Poliésteres/química , Estereoisomerismo , Especificidad por Sustrato
5.
J Am Chem Soc ; 139(2): 627-630, 2017 01 18.
Artículo en Inglés | MEDLINE | ID: mdl-28010060

RESUMEN

Regio- and stereoselective Baeyer-Villiger oxidations are difficult to achieve by classical chemical means, particularly when large, functionalized molecules are to be converted. Biocatalysis using flavin-containing Baeyer-Villiger monooxygenases (BVMOs) is a well-established tool to address these challenges, but known BVMOs have shortcomings in either stability or substrate selectivity. We characterized a novel BVMO from the thermophilic fungus Thermothelomyces thermophila, determined its three-dimensional structure, and demonstrated its use as a promising biocatalyst. This fungal enzyme displays excellent enantioselectivity, acts on various ketones, and is particularly active on polycyclic molecules. Most notably we observed that the enzyme can perform oxidations on both the A and D ring when converting steroids. These functional properties can be linked to unique structural features, which identify enzymes acting on bulky substrates as a distinct subgroup of the BVMO class.


Asunto(s)
Hongos/enzimología , Cetonas/química , Oxigenasas de Función Mixta/química , Ciclización , Estereoisomerismo
6.
Nat Chem Biol ; 11(4): 266-70, 2015 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-25686373

RESUMEN

Ribosome stalling at polyproline stretches is common and fundamental. In bacteria, translation elongation factor P (EF-P) rescues such stalled ribosomes, but only when it is post-translationally activated. In Escherichia coli, activation of EF-P is achieved by (R)-ß-lysinylation and hydroxylation of a conserved lysine. Here we have unveiled a markedly different modification strategy in which a conserved arginine of EF-P is rhamnosylated by a glycosyltransferase (EarP) using dTDP-L-rhamnose as a substrate. This is to our knowledge the first report of N-linked protein glycosylation on arginine in bacteria and the first example in which a glycosylated side chain of a translation elongation factor is essential for function. Arginine-rhamnosylation of EF-P also occurs in clinically relevant bacteria such as Pseudomonas aeruginosa. We demonstrate that the modification is needed to develop pathogenicity, making EarP and dTDP-L-rhamnose-biosynthesizing enzymes ideal targets for antibiotic development.


Asunto(s)
Arginina/química , Lisina/química , Factores de Elongación de Péptidos/química , Ramnosa/química , Ribosomas/química , Shewanella/enzimología , Secuencia de Aminoácidos , Sitios de Unión , Línea Celular Tumoral , Cromatografía Liquida , Cristalografía por Rayos X , Escherichia coli/metabolismo , Glicosilación , Glicosiltransferasas/metabolismo , Humanos , Hidroxilación , Cadenas de Markov , Espectrometría de Masas , Modelos Moleculares , Datos de Secuencia Molecular , Péptidos/química , Filogenia , Biosíntesis de Proteínas , Pseudomonas aeruginosa/enzimología , ARN Mensajero/metabolismo , Proteínas Recombinantes/química , Espectrometría de Masas en Tándem
7.
Org Biomol Chem ; 15(46): 9824-9829, 2017 Nov 29.
Artículo en Inglés | MEDLINE | ID: mdl-29130465

RESUMEN

Baeyer-Villiger monooxygenases (BVMOs) and evolved mutants have been shown to be excellent biocatalysts in many stereoselective Baeyer-Villiger transformations, but industrial applications are rare which is partly due to the insufficient thermostability of BVMOs under operating conditions. In the present study, the substrate scope of the recently discovered thermally stable BVMO, TmCHMO from Thermocrispum municipale, was studied. This revealed that the wild-type (WT) enzyme catalyzes the oxidation of a variety of structurally different ketones with notable activity and enantioselectivity, including the desymmetrization of 4-methylcyclohexanone (99% ee, S). In order to induce the reversal of enantioselectivity of this reaction as well as the transformations of other substrates, directed evolution based on iterative saturation mutagenesis (ISM) was applied, leading to (R)-selectivity (94% ee) without affecting the thermostability of the biocatalyst.


Asunto(s)
Oxigenasas de Función Mixta/química , Temperatura , Biocatálisis , Estabilidad de Enzimas , Oxigenasas de Función Mixta/metabolismo , Modelos Moleculares , Estructura Molecular , Estereoisomerismo
8.
Annu Rev Biophys ; 52: 413-432, 2023 05 09.
Artículo en Inglés | MEDLINE | ID: mdl-37159296

RESUMEN

Synthetic biology seeks to probe fundamental aspects of biological form and function by construction [i.e., (re)synthesis] rather than deconstruction (analysis). In this sense, biological sciences now follow the lead given by the chemical sciences. Synthesis can complement analytic studies but also allows novel approaches to answering fundamental biological questions and opens up vast opportunities for the exploitation of biological processes to provide solutions for global problems. In this review, we explore aspects of this synthesis paradigm as applied to the chemistry and function of nucleic acids in biological systems and beyond, specifically, in genome resynthesis, synthetic genetics (i.e., the expansion of the genetic alphabet, of the genetic code, and of the chemical make-up of genetic systems), and the elaboration of orthogonal biosystems and components.


Asunto(s)
Código Genético , Ácidos Nucleicos , Biología Sintética
10.
Curr Opin Biotechnol ; 74: 129-136, 2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-34883451

RESUMEN

Beyond the natural nucleic acids DNA and RNA, nucleic acid chemistry has unlocked a whole universe of modifications to their canonical chemical structure, which can in various ways modify and enhance nucleic acid function and utility for applications in biotechnology and medicine. Unlike the natural modifications of tRNA and rRNA or the epigenetic modifications in mRNA and genomic DNA, these altered chemistries are not found in nature and therefore these molecules are referred to as xeno-nucleic acids (XNAs). In this review we aim to focus specifically on recent progress in a subsection of this vast field-synthetic genetics-concerned with encoded synthesis, reverse transcription, and evolution of XNAs.


Asunto(s)
Ácidos Nucleicos , ADN/química , ADN/genética , Ácidos Nucleicos/química , ARN/química , ARN/genética
11.
Elife ; 92020 03 31.
Artículo en Inglés | MEDLINE | ID: mdl-32228861

RESUMEN

Enzyme instability is an important limitation for the investigation and application of enzymes. Therefore, methods to rapidly and effectively improve enzyme stability are highly appealing. In this study we applied a computational method (FRESCO) to guide the engineering of an alcohol dehydrogenase. Of the 177 selected mutations, 25 mutations brought about a significant increase in apparent melting temperature (ΔTm ≥ +3 °C). By combining mutations, a 10-fold mutant was generated with a Tm of 94 °C (+51 °C relative to wild type), almost reaching water's boiling point, and the highest increase with FRESCO to date. The 10-fold mutant's structure was elucidated, which enabled the identification of an activity-impairing mutation. After reverting this mutation, the enzyme showed no loss in activity compared to wild type, while displaying a Tm of 88 °C (+45 °C relative to wild type). This work demonstrates the value of enzyme stabilization through computational library design.


Asunto(s)
Alcohol Deshidrogenasa/química , Escherichia coli/genética , Mutación , Ingeniería de Proteínas/métodos , Temperatura de Transición , Alcohol Deshidrogenasa/genética , Computadores Moleculares , Cristalización , Estabilidad de Enzimas , Biblioteca de Genes , Cinética , Conformación Proteica , Saccharomycetales/enzimología
12.
Curr Opin Struct Biol ; 59: 29-37, 2019 12.
Artículo en Inglés | MEDLINE | ID: mdl-30831329

RESUMEN

Monooxygenases (MOs) face the challenging reaction of an organic target, oxygen and a cofactor - most commonly heme or flavin. To correctly choreograph the substrates spatially and temporally, MOs evolved a variety of strategies, which involve structural flexibility. Besides classical domain and loop movements, flavin-containing MOs feature conformational changes of their flavin prosthetic group and their nicotinamide cofactor. With similar mechanisms emerging in various subclasses, their generality and involvement in selectivity are intriguing questions. Cytochrome P450 MOs are often inherently plastic and large movements of individual segments throughout the entire structure occur. As these complicated and often unpredictable movements are largely responsible for substrate uptake, engineering strategies for these enzymes were mostly successful when randomly mutating residues across the entire structure.


Asunto(s)
Aminoácidos/química , Dominio Catalítico , Flavinas/química , Hemo/química , Oxigenasas de Función Mixta/química , Simulación del Acoplamiento Molecular , Simulación de Dinámica Molecular , Conformación Molecular , Estructura Molecular , Unión Proteica
13.
Front Microbiol ; 10: 1148, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31178848

RESUMEN

Tripeptides with two consecutive prolines are the shortest and most frequent sequences causing ribosome stalling. The bacterial translation elongation factor P (EF-P) relieves this arrest, allowing protein biosynthesis to continue. A seven amino acids long loop between beta-strands ß3/ß4 is crucial for EF-P function and modified at its tip by lysylation of lysine or rhamnosylation of arginine. Phylogenetic analyses unveiled an invariant proline in the -2 position of the modification site in EF-Ps that utilize lysine modifications such as Escherichia coli. Bacteria with the arginine modification like Pseudomonas putida on the contrary have selected against it. Focusing on the EF-Ps from these two model organisms we demonstrate the importance of the ß3/ß4 loop composition for functionalization by chemically distinct modifications. Ultimately, we show that only two amino acid changes in E. coli EF-P are needed for switching the modification strategy from lysylation to rhamnosylation.

14.
Methods Mol Biol ; 1685: 69-85, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29086304

RESUMEN

The ability to stabilize enzymes and other proteins has wide-ranging applications. Most protocols for enhancing enzyme stability require multiple rounds of high-throughput screening of mutant libraries and provide only modest improvements of stability. Here, we describe a computational library design protocol that can increase enzyme stability by 20-35 °C with little experimental screening, typically fewer than 200 variants. This protocol, termed FRESCO, scans the entire protein structure to identify stabilizing disulfide bonds and point mutations, explores their effect by molecular dynamics simulations, and provides mutant libraries with variants that have a good chance (>10%) to exhibit enhanced stability. After experimental verification, the most effective mutations are combined to produce highly robust enzymes.


Asunto(s)
Enzimas/química , Enzimas/genética , Biblioteca de Genes , Evolución Molecular Dirigida/métodos , Estabilidad de Enzimas , Ensayos Analíticos de Alto Rendimiento , Simulación de Dinámica Molecular , Mutación , Ingeniería de Proteínas/métodos , Temperatura
15.
ACS Catal ; 8(12): 11648-11656, 2018 Dec 07.
Artículo en Inglés | MEDLINE | ID: mdl-30687578

RESUMEN

Detoxifying enzymes such as flavin-containing monooxygenases deal with a huge array of highly diverse xenobiotics and toxic compounds. In addition to being of high physiological relevance, these drug-metabolizing enzymes are useful catalysts for synthetic chemistry. Despite the wealth of studies, the molecular basis of their relaxed substrate selectivity remains an open question. Here, we addressed this issue by applying a cumulative alanine mutagenesis approach to cyclohexanone monooxygenase from Thermocrispum municipale, a flavin-dependent Baeyer-Villiger monooxygenase which we chose as a model system because of its pronounced thermostability and substrate promiscuity. Simultaneous removal of up to eight noncatalytic active-site side chains including four phenylalanines had no effect on protein folding, thermostability, and cofactor loading. We observed a linear decrease in activity, rather than a selectivity switch, and attributed this to a less efficient catalytic environment in the enlarged active-site space. Time-resolved kinetic studies confirmed this interpretation. We also determined the crystal structure of the enzyme in complex with a mimic of the reaction intermediate that shows an unaltered overall protein conformation. These findings led us to propose that this cyclohexanone monooxygenase may lack a distinct substrate selection mechanism altogether. We speculate that the main or exclusive function of the protein shell in promiscuous enzymes might be the stabilization and accessibility of their very reactive catalytic intermediates.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA