Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Pharm Res ; 40(8): 1885-1899, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-37344602

RESUMEN

BACKGROUND & PURPOSE: Heroin (diacetylmorphine; diamorphine) is a highly addictive opioid prodrug. Heroin prescription is possible in some countries for chronic, treatment-refractory opioid-dependent patients and as a potent analgesic for specific indications. We aimed to study the pharmacokinetic interactions of heroin and its main pharmacodynamically active metabolites, 6-monoacetylmorphine (6-MAM) and morphine, with the multidrug efflux transporters P-glycoprotein/ABCB1 and BCRP/ABCG2 using wild-type, Abcb1a/1b and Abcb1a/1b;Abcg2 knockout mice. METHODS & RESULTS: Upon subcutaneous (s.c.) heroin administration, its blood levels decreased quickly, making it challenging to detect heroin even shortly after dosing. 6-MAM was the predominant active metabolite present in blood and most tissues. At 10 and 30 min after heroin administration, 6-MAM and morphine brain accumulation were increased about 2-fold when mouse (m)Abcb1a/1b and mAbcg2 were ablated. Fifteen minutes after direct s.c. administration of an equimolar dose of 6-MAM, we observed good intrinsic brain penetration of 6-MAM in wild-type mice. Still, mAbcb1 limited brain accumulation of 6-MAM and morphine without affecting their blood exposure, and possibly mediated their direct intestinal excretion. A minor contribution of mAbcg2 to these effects could not be excluded. CONCLUSIONS: We show that mAbcb1a/1b can limit 6-MAM and morphine brain exposure. Pharmacodynamic behavioral/postural observations, while non-quantitative, supported moderately increased brain levels of 6-MAM and morphine in the knockout mouse strains. Variation in ABCB1 activity due to genetic polymorphisms or environmental factors (e.g., drug interactions) might affect 6-MAM/morphine exposure in individuals, but only to a limited extent.


Asunto(s)
Heroína , Morfina , Ratones , Animales , Heroína/metabolismo , Heroína/farmacología , Morfina/metabolismo , Analgésicos Opioides/metabolismo , Miembro 1 de la Subfamilia B de Casetes de Unión a ATP/metabolismo , Transportador de Casetes de Unión a ATP, Subfamilia G, Miembro 2/metabolismo , Proteínas de Neoplasias/metabolismo , Encéfalo/metabolismo , Derivados de la Morfina/metabolismo , Derivados de la Morfina/farmacología , Subfamilia B de Transportador de Casetes de Unión a ATP/genética , Subfamilia B de Transportador de Casetes de Unión a ATP/metabolismo , Ratones Noqueados
2.
Mol Pharm ; 18(12): 4371-4384, 2021 12 06.
Artículo en Inglés | MEDLINE | ID: mdl-34730366

RESUMEN

Niraparib (Zejula), a selective oral PARP1/2 inhibitor registered for ovarian, fallopian tube, and primary peritoneal cancer treatment, is under investigation for other malignancies, including brain tumors. We explored the impact of the ABCB1 and ABCG2 multidrug efflux transporters, the OATP1A/1B uptake transporters, and the CYP3A drug-metabolizing complex on oral niraparib pharmacokinetics, using wild-type and genetically modified mouse and cell line models. In vitro, human ABCB1 and mouse Abcg2 transported niraparib moderately. Compared to wild-type mice, niraparib brain-to-plasma ratios were 6- to 7-fold increased in Abcb1a/1b-/- and Abcb1a/1b;Abcg2-/- but not in single Abcg2-/- mice, while niraparib plasma exposure at later time points was ∼2-fold increased. Niraparib recovery in the small intestinal content was markedly reduced in the Abcb1a/1b-deficient strains. Pretreatment of wild-type mice with oral elacridar, an ABCB1/ABCG2 inhibitor, increased niraparib brain concentration and reduced small intestinal content recovery to levels observed in Abcb1a/1b;Abcg2-/- mice. Oatp1a/1b deletion did not significantly affect niraparib oral bioavailability or liver distribution but decreased metabolite M1 liver uptake. No significant effects of mouse Cyp3a ablation were observed, but overexpression of transgenic human CYP3A4 unexpectedly increased niraparib plasma exposure. Thus, Abcb1 deficiency markedly increased niraparib brain distribution and reduced its small intestinal content recovery, presumably through reduced biliary excretion and/or decreased direct intestinal excretion. Elacridar pretreatment inhibited both processes completely. Clinically, the negligible role of OATP1 and CYP3A could be advantageous for niraparib, diminishing drug-drug interaction or interindividual variation risks involving these proteins. These findings may support the further clinical development and application of niraparib.


Asunto(s)
Miembro 1 de la Subfamilia B de Casetes de Unión a ATP/fisiología , Encéfalo/metabolismo , Indazoles/farmacocinética , Intestinos/metabolismo , Piperidinas/farmacocinética , Inhibidores de Poli(ADP-Ribosa) Polimerasas/farmacocinética , Acridinas/farmacología , Animales , Transporte Biológico , Citocromo P-450 CYP3A/fisiología , Perros , Células de Riñón Canino Madin Darby , Ratones , Tetrahidroisoquinolinas/farmacología , Distribución Tisular
3.
Front Pharmacol ; 13: 855000, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35308219

RESUMEN

The psychedelic alkaloid ibogaine is increasingly used as an oral treatment for substance use disorders, despite being unlicensed in most countries and having reported adverse events. Using wild-type and genetically modified mice, we investigated the impact of mouse (m)Abcb1a/1b and Abcg2 drug efflux transporters, human and mouse OATP drug uptake transporters, and the CYP3A drug-metabolizing complex on the pharmacokinetics of ibogaine and its main metabolites. Following oral ibogaine administration (10 mg/kg) to mice, we observed a rapid and extensive conversion of ibogaine to noribogaine (active metabolite) and noribogaine glucuronide. Mouse Abcb1a/1b, in combination with mAbcg2, modestly restricted the systemic exposure (plasma AUC) and peak plasma concentration (Cmax) of ibogaine. Accordingly, we found a ∼2-fold decrease in the relative recovery of ibogaine in the small intestine with fecal content in the absence of both transporters compared to the wild-type situation. Ibogaine presented good intrinsic brain penetration even in wild-type mice (brain-to-plasma ratio of 3.4). However, this was further increased by 1.5-fold in Abcb1a/1b;Abcg2 -/- mice, but not in Abcg2 -/- mice, revealing a stronger effect of mAbcb1a/1b in restricting ibogaine brain penetration. The studied human OATP transporters showed no major impact on ibogaine plasma and tissue disposition, but the mOatp1a/1b proteins modestly affected the plasma exposure of ibogaine metabolites and the tissue disposition of noribogaine glucuronide. No considerable role of mouse Cyp3a knockout or transgenic human CYP3A4 overexpression was observed in the pharmacokinetics of ibogaine and its metabolites. In summary, ABCB1, in combination with ABCG2, limits the oral availability of ibogaine, possibly by mediating its hepatobiliary and/or direct intestinal excretion. Moreover, ABCB1 restricts ibogaine brain penetration. Variation in ABCB1/ABCG2 activity due to genetic variation and/or pharmacologic inhibition might therefore affect ibogaine exposure in patients, but only to a limited extent. The insignificant impact of human CYP3A4 and OATP1B1/1B3 transporters may be clinically advantageous for ibogaine and noribogaine use, as it decreases the risks of undesirable drug interactions or interindividual variation related to CYP3A4 and/or OATP activity.

4.
Drug Alcohol Depend ; 227: 108984, 2021 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-34482044

RESUMEN

OBJECTIVE: To review the scientific literature on the pharmacokinetics, pharmacodynamics and clinical efficacy and safety of (supervised) oral diacetylmorphine for patients with severe heroin dependence. METHODS: The PubMed, Embase, Web of Science and PsycINFO databases were searched. Eleven published studies were identified and selected based on defined eligibility and exclusion criteria. RESULTS: Four pharmacokinetic studies reported negligible plasma concentrations of diacetylmorphine and its active metabolite 6-monacetylmorphine. Among six pharmacodynamic studies, three trials showed that oral diacetylmorphine reduced opioid withdrawal symptoms, one open-label pilot study reported that two patients experienced a modest 'rush' after oral diacetylmorphine and two studies found that patients could not distinguish between oral diacetylmorphine, methadone, or morphine. Regarding the clinical studies, a Swiss prospective cohort study in patients with heroin dependence showed high retention rates of oral diacetylmorphine treatment with few serious adverse events, whereas in the Canadian SALOME trial, oral diacetylmorphine treatment was prematurely discontinued because treatment retention of oral diacetylmorphine was lower than injectable diacetylmorphine maintenance treatment. Finally, two case studies illustrate the limitations and potential problems of oral diacetylmorphine in the treatment of treatment-refractory heroin dependent patients. CONCLUSIONS: Based on all published data, it is unlikely that oral diacetylmorphine produces a substantial 'rush'. Prescription of oral diacetylmorphine might therefore be effective only for treatment-refractory patients with heroin dependence (i) as maintenance treatment for those who never injected or inhaled opioids; (ii) as maintenance treatment for those who want to switch from injection to oral administration of diacetylmorphine; and/or (iii) to reduce opioid withdrawal symptoms.


Asunto(s)
Dependencia de Heroína , Heroína , Administración Oral , Canadá , Heroína/uso terapéutico , Dependencia de Heroína/tratamiento farmacológico , Humanos , Metadona/uso terapéutico , Narcóticos/uso terapéutico , Proyectos Piloto , Estudios Prospectivos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA