Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 62
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Acta Neurochir (Wien) ; 165(11): 3549-3558, 2023 11.
Artículo en Inglés | MEDLINE | ID: mdl-37464202

RESUMEN

PURPOSE: MRI has become an essential diagnostic imaging modality for peripheral nerve pathology. Early MR imaging for peripheral nerve depended on inferred nerve involvement by visualizing downstream effects such as denervation muscular atrophy; improvements in MRI technology have made possible direct visualization of the nerves. In this paper, we share our early clinical experience with 7T for benign neurogenic tumors. MATERIALS: Patients with benign neurogenic tumors and 7T MRI examinations available were reviewed. Cases of individual benign peripheral nerve tumors were included to demonstrate 7T MRI imaging characteristics. All exams were performed on a 7T MRI MAGNETOM Terra using a 28-channel receive, single-channel transmit knee coil. RESULTS: Five cases of four pathologies were selected from 38 patients to depict characteristic imaging features in different benign nerve tumors and lesions using 7T MRI. CONCLUSION: The primary advantage of 7T over 3T is an increase in signal-to-noise ratio which allows higher in plane resolution so that the smallest neural structures can be seen and characterized. This improvement in MR imaging provides the opportunity for more accurate diagnosis and surgical planning in selected cases. As this technology continues to evolve for clinical purposes, we anticipate increasing applications and improved patient care using 7T MRI for the diagnosis of peripheral nerve masses.


Asunto(s)
Neoplasias , Neoplasias del Sistema Nervioso Periférico , Humanos , Imagen por Resonancia Magnética/métodos , Relación Señal-Ruido , Nervios Periféricos , Neoplasias del Sistema Nervioso Periférico/diagnóstico por imagen , Neoplasias del Sistema Nervioso Periférico/cirugía
2.
Neuroimage ; 229: 117741, 2021 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-33454406

RESUMEN

OBJECTIVE: To establish normative reference values for total grey matter cerebral blood flow (CBFGM) measured using pseudo-continuous arterial spin labelling (pCASL) MRI in a large cohort of community-dwelling adults aged 54 years and older. BACKGROUND: Quantitative assessment of CBFGM may provide an imaging biomarker for the early detection of those at risk of neurodegenerative diseases, such as Alzheimer's and dementia. However, the use of this method to differentiate normal age-related decline in CBFGM from pathological reduction has been hampered by the lack of reference values for cerebral perfusion. METHODS: The study cohort comprised a subset of wave 3 (2014-2015) participants from The Irish Longitudinal Study on Ageing (TILDA), a large-scale prospective cohort study of individuals aged 50 and over. Of 4309 participants attending for health centre assessment, 578 individuals returned for 3T multi-parametric MRI brain examinations. In total, CBFGM data acquired from 468 subjects using pCASL-MRI were included in this analysis. Normative values were estimated using Generalised Additive Models for Location Shape and Scale (GAMLSS) and are presented as percentiles, means and standard deviations. RESULTS: The mean age of the cohort was 68.2 ± 6.9 years and 51.7% were female. Mean CBFGM for the cohort was 36.5 ± 8.2 ml/100 g/min. CBFGM decreased by 0.2 ml/100 g/min for each year increase in age (95% CI = -0.3, -0.1; p ≤ 0.001) and was 3.1 ml/100 g/min higher in females (95% CI = 1.6, 4.5; p ≤ 0.001). CONCLUSIONS: This study is by far the largest single-site study focused on an elderly community-dwelling cohort to present normative reference values for CBFGM measured at 3T using pCASL-MRI. Significant age- and sex-related differences exist in CBFGM.


Asunto(s)
Envejecimiento/fisiología , Encéfalo/diagnóstico por imagen , Encéfalo/fisiología , Circulación Cerebrovascular/fisiología , Sustancia Gris/diagnóstico por imagen , Sustancia Gris/fisiología , Anciano , Anciano de 80 o más Años , Encéfalo/irrigación sanguínea , Estudios de Cohortes , Estudios Transversales , Análisis de Datos , Femenino , Sustancia Gris/irrigación sanguínea , Humanos , Irlanda/epidemiología , Estudios Longitudinales , Imagen por Resonancia Magnética/tendencias , Masculino , Persona de Mediana Edad , Estudios Prospectivos
3.
J Magn Reson Imaging ; 53(2): 333-346, 2021 02.
Artículo en Inglés | MEDLINE | ID: mdl-32830900

RESUMEN

Magnetic resonance imaging and spectroscopy (MRI/MRS) at 7T represents an exciting advance in MR technology, with intriguing possibilities to enhance image spatial, spectral, and contrast resolution. To ensure the safe use of this technology while still harnessing its potential, clinical staff and researchers need to be cognizant of some safety concerns arising from the increased magnetic field strength and higher Larmor frequency. The higher static magnetic fields give rise to enhanced transient bioeffects and an increased risk of adverse incidents related to electrically conductive implants. Many technical challenges remain and the continuing rapid pace of development of 7T MRI/MRS is likely to present further challenges to ensuring safety of this technology in the years ahead. The recent regulatory clearance for clinical diagnostic imaging at 7T will likely increase the installed base of 7T systems, particularly in hospital environments with little prior ultrahigh-field MR experience. Informed risk/benefit analyses will be required, particularly where implant manufacturer-published 7T safety guidelines for implants are unavailable. On behalf of the International Society for Magnetic Resonance in Medicine, the aim of this article is to provide a reference document to assist institutions developing local institutional policies and procedures that are specific to the safe operation of 7T MRI/MRS. Details of current 7T technology and the physics underpinning its functionality are reviewed, with the aim of supporting efforts to expand the use of 7T MRI/MRS in both research and clinical environments. Current gaps in knowledge are also identified, where additional research and development are required. Level of Evidence 5 Technical Efficacy 2 J. MAGN. RESON. IMAGING 2021;53:333-346.


Asunto(s)
Campos Magnéticos , Imagen por Resonancia Magnética , Humanos , Imagen por Resonancia Magnética/efectos adversos , Espectroscopía de Resonancia Magnética , Física
4.
Neuroradiology ; 63(2): 167-177, 2021 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-33388947

RESUMEN

Since the relatively recent regulatory approval for clinical use in both Europe and North America, 7-Tesla (T) MRI has been adopted for clinical practice at our institution. Based on this experience, this article reviews the unique features of 7-T MRI neuroimaging and addresses the challenges of establishing a 7-T MRI clinical practice. The underlying fundamental physics principals of high-field strength MRI are briefly reviewed. Scanner installation, safety considerations, and artifact mitigation techniques are discussed. Seven-tesla MRI case examples of neurologic diseases including epilepsy, vascular abnormalities, and tumor imaging are presented to illustrate specific applications of 7-T MRI. The advantages of 7-T MRI in conjunction with advanced neuroimaging techniques such as functional MRI are presented. Seven-tesla MRI produces more detailed information and, in some cases, results in specific diagnoses where previous 3-T studies were insufficient. Still, persistent technical issues for 7-T scanning present ongoing challenges for radiologists.


Asunto(s)
Epilepsia , Imagen por Resonancia Magnética , Artefactos , Epilepsia/diagnóstico por imagen , Europa (Continente) , Humanos , Neuroimagen
5.
Neuroradiology ; 63(3): 439-445, 2021 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-33025042

RESUMEN

PURPOSE: We investigated the hypothesis that increasing fMRI temporal resolution using a multiband (MB) gradient echo-echo planar imaging (GRE-EPI) pulse sequence provides fMRI language maps of higher statistical quality than those acquired with a traditional GRE-EPI sequence. METHODS: This prospective study enrolled 29 consecutive patients receiving language fMRI prior to a potential brain resection for tumor, AVM, or epilepsy. A 4-min rhyming task was performed at 3.0 Tesla with a traditional GRE-EPI pulse sequence (TR = 2000, TE = 30, matrix = 64/100%, slice = 4/0, FOV = 24, slices = 30, time points = 120) and an additional MB GRE-EPI pulse sequence with an acceleration factor of 6 (TR = 333, TE = 30, matrix 64/100%, slice = 4/0, FOV = 24, time points = 720). Spatially filtered t statistical maps were generated. Volumes of interest (VOIs) were drawn around activations at Broca's, dorsolateral prefrontal cortex, Wernicke's, and the visual word form areas. The t value maxima were measured for the overall brain and each of the VOIs. A paired t test was performed for the corresponding traditional and MB GRE-EPI measurements. RESULTS: The mean age of subjects was 42.6 years old (18-75). Sixty-two percent were male. The average overall brain t statistic maxima for the MB pulse sequence (t = 15.4) was higher than for the traditional pulse sequence (t = 9.3, p = < .0001). This also held true for Broca's area (p < 0.0001), Wernicke's area (p < .0001), dorsolateral prefrontal cortex (p < .0001), and the visual word form area (p < .0001). CONCLUSION: A MB GRE-EPI fMRI pulse sequence employing high temporal resolution provides clinical fMRI language maps of greater statistical significance than those obtained with a traditional GRE-EPI sequence.


Asunto(s)
Lenguaje , Imagen por Resonancia Magnética , Adulto , Mapeo Encefálico , Imagen Eco-Planar , Humanos , Masculino , Estudios Prospectivos
6.
Sensors (Basel) ; 20(8)2020 Apr 23.
Artículo en Inglés | MEDLINE | ID: mdl-32340281

RESUMEN

The aim of this work was to develop multimodal anthropomorphic breast phantoms suitable for evaluating the imaging performance of a recently-introduced Microwave Imaging (MWI) technique in comparison to the established diagnostic imaging modalities of Magnetic Resonance Imaging (MRI), Ultrasound (US), mammography and Computed Tomography (CT). MWI is an emerging technique with significant potential to supplement established imaging techniques to improve diagnostic confidence for breast cancer detection. To date, numerical simulations have been used to assess the different MWI scanning and image reconstruction algorithms in current use, while only a few clinical trials have been conducted. To bridge the gap between the numerical simulation environment and a more realistic diagnostic scenario, anthropomorphic phantoms which mimic breast tissues in terms of their heterogeneity, anatomy, morphology, and mechanical and dielectric characteristics, may be used. Key in this regard is achieving realism in the imaging appearance of the different healthy and pathologic tissue types for each of the modalities, taking into consideration the differing imaging and contrast mechanisms for each modality. Suitable phantoms can thus be used by radiologists to correlate image findings between the emerging MWI technique and the more familiar images generated by the conventional modalities. Two phantoms were developed in this study, representing difficult-to-image and easy-to-image patients: the former contained a complex boundary between the mammary fat and fibroglandular tissues, extracted from real patient MRI datasets, while the latter contained a simpler and less morphologically accurate interface. Both phantoms were otherwise identical, with tissue-mimicking materials (TMMs) developed to mimic skin, subcutaneous fat, fibroglandular tissue, tumor and pectoral muscle. The phantoms' construction used non-toxic materials, and they were inexpensive and relatively easy to manufacture. Both phantoms were scanned using conventional modalities (MRI, US, mammography and CT) and a recently introduced MWI radar detection procedure called in-coherent Multiple Signal Classification (I-MUSIC). Clinically realistic artifact-free images of the anthropomorphic breast phantoms were obtained using the conventional imaging techniques as well as the emerging technique of MWI.


Asunto(s)
Mama/diagnóstico por imagen , Mamografía/métodos , Algoritmos , Simulación por Computador , Femenino , Humanos , Procesamiento de Imagen Asistido por Computador , Imagen por Resonancia Magnética/métodos , Microondas , Fantasmas de Imagen , Tomografía Computarizada por Rayos X/métodos , Ultrasonografía
7.
J Magn Reson Imaging ; 50(5): 1534-1544, 2019 11.
Artículo en Inglés | MEDLINE | ID: mdl-30779475

RESUMEN

BACKGROUND: MR image intensity nonuniformity is often observed at 7T. Reference scans from the body coil used for uniformity correction at lower field strengths are typically not available at 7T. PURPOSE: To evaluate the efficacy of a novel algorithm, Uniform Combined Reconstruction (UNICORN), to correct receive coil-induced nonuniformity in musculoskeletal 7T MRI without the use of a reference scan. STUDY TYPE: Retrospective image analysis study. SUBJECTS: MRI data of 20 subjects was retrospectively processed offline. Field Strength/Sequence: Knees of 20 subjects were imaged at 7T with a single-channel transmit, 28-channel phased-array receive knee coil. A turbo-spin-echo sequence was used to acquire 33 series of images. ASSESSMENT: Three fellowship-trained musculoskeletal radiologists with cumulative experience of 42 years reviewed the images. The uniformity, contrast, signal-to-noise ratio (SNR), and overall image quality were evaluated for images with no postprocessing, images processed with N4 bias field correction algorithm, and the UNICORN algorithm. STATISTICAL TESTS: Intraclass correlation coefficient (ICC) was used for measuring the interrater reliability. ICC and 95% confidence intervals (CIs) were calculated using the R statistical package employing a two-way mixed-effects model based on a mean rating (k = 3) for absolute agreement. The Wilcoxon signed-rank test with continuity correction was used for analyzing the overall image quality scores. RESULTS: UNICORN was preferred among the three methods evaluated for uniformity in 97.9% of the pooled ratings, with excellent interrater agreement (ICC of 0.98, CI 0.97-0.99). UNICORN was also rated better than N4 for contrast and equivalent to N4 in SNR with ICCs of 0.80 (CI 0.72-0.86) and 0.67 (CI 0.54-0.77), respectively. The overall image quality scores for UNICORN were significantly higher than N4 (P < 6 × 10-13 ), with good to excellent interrater agreement (ICC 0.90, CI 0.86-0.93). DATA CONCLUSION: Without the use of a reference scan, UNICORN provides better image uniformity, contrast, and overall image quality at 7T compared with the N4 bias field-correction algorithm. LEVEL OF EVIDENCE: 4 Technical Efficacy: Stage 1 J. Magn. Reson. Imaging 2019;50:1534-1544.


Asunto(s)
Procesamiento de Imagen Asistido por Computador/métodos , Rodilla/diagnóstico por imagen , Imagen por Resonancia Magnética , Músculo Esquelético/diagnóstico por imagen , Algoritmos , Humanos , Variaciones Dependientes del Observador , Valores de Referencia , Reproducibilidad de los Resultados , Estudios Retrospectivos , Relación Señal-Ruido
8.
Eur J Neurosci ; 2018 May 27.
Artículo en Inglés | MEDLINE | ID: mdl-29804303

RESUMEN

Working memory-based cognitive remediation therapy (CT) for psychosis has recently been associated with broad improvements in performance on untrained tasks measuring working memory, episodic memory and IQ, and changes in associated brain regions. However, it is unclear whether these improvements transfer to the domain of social cognition and neural activity related to performance on social cognitive tasks. We examined performance on the Reading the Mind in the Eyes test (Eyes test) in a large sample of participants with psychosis who underwent working memory-based CT (N = 43) compared to a control group of participants with psychosis (N = 35). In a subset of this sample, we used functional magnetic resonance imaging (fMRI) to examine changes in neural activity during a facial emotion recognition task in participants who underwent CT (N = 15) compared to a control group (N = 15). No significant effects of CT were observed on Eyes test performance or on neural activity during facial emotion recognition, either at p < 0.05 family-wise error or at a p < 0.001 uncorrected threshold, within a priori social cognitive regions of interest. This study suggests that working memory-based CT does not significantly impact an aspect of social cognition which was measured behaviourally and neurally. It provides further evidence that deficits in the ability to decode mental state from facial expressions are dissociable from working memory deficits, and suggests that future CT programmes should target social cognition in addition to working memory for the purposes of further enhancing social function.

9.
J Neurosci ; 35(39): 13501-10, 2015 Sep 30.
Artículo en Inglés | MEDLINE | ID: mdl-26424894

RESUMEN

Although the visual system has been extensively investigated, an integrated account of the spatiotemporal dynamics of long-range signal propagation along the human visual pathways is not completely known or validated. In this work, we used dynamic causal modeling approach to provide insights into the underlying neural circuit dynamics of pattern reversal visual-evoked potentials extracted from concurrent EEG-fMRI data. A recurrent forward-backward connectivity model, consisting of multiple interacting brain regions identified by EEG source localization aided by fMRI spatial priors, best accounted for the data dynamics. Sources were first identified in the thalamic area, primary visual cortex, as well as higher cortical areas along the ventral and dorsal visual processing streams. Consistent with hierarchical early visual processing, the model disclosed and quantified the neural temporal dynamics across the identified activity sources. This signal propagation is dominated by a feedforward process, but we also found weaker effective feedback connectivity. Using effective connectivity analysis, the optimal dynamic causal modeling revealed enhanced connectivity along the dorsal pathway but slightly suppressed connectivity along the ventral pathway. A bias was also found in favor of the right hemisphere consistent with functional attentional asymmetry. This study validates, for the first time, the long-range signal propagation timing in the human visual pathways. A similar modeling approach can potentially be used to understand other cognitive processes and dysfunctions in signal propagation in neurological and neuropsychiatric disorders. Significance statement: An integrated account of long-range visual signal propagation in the human brain is currently incomplete. Using computational neural modeling on our acquired concurrent EEG-fMRI data under a visual evoked task, we found not only a substantial forward propagation toward "higher-order" brain regions but also a weaker backward propagation. Asymmetry in our model's long-range connectivity accounted for the various observed activity biases. Importantly, the model disclosed the timing of signal propagation across these connectivity pathways and validates, for the first time, long-range signal propagation in the human visual system. A similar modeling approach could be used to identify neural pathways for other cognitive processes and their dysfunctions in brain disorders.


Asunto(s)
Vías Nerviosas/fisiología , Vías Visuales/fisiología , Adulto , Mapeo Encefálico , Corteza Cerebral/fisiología , Electroencefalografía , Potenciales Evocados Visuales , Retroalimentación Sensorial/fisiología , Humanos , Imagen por Resonancia Magnética , Masculino , Persona de Mediana Edad , Modelos Neurológicos , Tálamo/fisiología , Corteza Visual/fisiología , Adulto Joven
10.
Hum Brain Mapp ; 36(11): 4648-63, 2015 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-26287509

RESUMEN

Symptoms of attention deficit hyperactivity disorder (ADHD) in children often persist into adulthood and can lead to severe antisocial behavior. However, to-date it remains unclear whether neuro-functional abnormalities cause ADHD, which in turn can then provide a marker of persistent ADHD. Using event-related functional magnetic resonance imaging (fMRI), we measured blood oxygenation level dependent (BOLD) signal changes in subjects during a reversal learning task in which choice of the correct stimulus led to a probabilistically determined 'monetary' reward or punishment. Participants were diagnosed with ADHD during their childhood (N=32) and were paired with age, gender, and education matched healthy controls (N=32). Reassessment of the ADHD group as adults resulted in a split between either persistent (persisters, N=17) or remitted ADHDs (remitters, N=15). All three groups showed significantly decreased activation in the medial prefrontal cortex (PFC) and the left striatum during punished correct responses, however only remitters and controls presented significant psycho-physiological interaction between these fronto-striatal reward and outcome valence networks. Comparing persisters to remitters and controls showed significantly inverted responses to punishment (P<0.05, family-wise error corrected) in left PFC region. Interestingly, the decreased activation shown after punishment was located in different areas of the PFC for remitters compared with controls, suggesting that remitters might have learned compensation strategies to overcome their ADHD symptoms. Thus, fMRI helps understanding the neuro-functional basis of ADHD related behavior differences and differentiates between persistent and remittent ADHD.


Asunto(s)
Trastorno por Déficit de Atención con Hiperactividad/fisiopatología , Mapeo Encefálico/métodos , Neostriado/fisiopatología , Red Nerviosa/fisiopatología , Corteza Prefrontal/fisiopatología , Aprendizaje por Probabilidad , Recompensa , Adulto , Trastorno por Déficit de Atención con Hiperactividad/clasificación , Femenino , Humanos , Imagen por Resonancia Magnética , Masculino , Adulto Joven
11.
Epilepsia ; 56(10): 1551-61, 2015 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-26249101

RESUMEN

OBJECTIVE: The identification of "endophenotypes"-measurable variations along the pathways between genes and distal disease state-may help deconstruct focal epilepsies into more sensitive phenomena and improve future efforts to map the genetic underpinnings of the disorder. In this study, we set out to determine if diffusion tensor imaging (DTI)-inferred white matter (WM) alterations represent a suitable structural endophenotype for focal epilepsy. METHODS: We recruited 25 patients with sporadic mesial temporal lobe epilepsy (MTLE) with normal magnetic resonance imaging (MRI) findings, 25 of their gender-matched, asymptomatic siblings, and 60 control subjects. Whole-brain, voxelwise statistics were conducted to identify regions of microstructural degeneration in patients with MTLE and/or their asymptomatic siblings. WM tracts exhibiting evidence of microstructural disruption were then reconstructed using deterministic tractography. Diffusion metrics including fractional anisotropy (FA) and mean diffusivity (MD) were compared across groups using a series of one-way multivariate analyses of covariance (MANCOVAs). RESULTS: Voxelwise statistics revealed significant FA reductions in the corpus callosum (CC), bilateral superior longitudinal fasciculi (SLF), bilateral inferior longitudinal fasciculi (ILF), and left corticospinal tract (CST) in MTLE patients only. MD increases were observed in MTLE patients and their asymptomatic siblings in the left SLF and left CST. Deterministic tractography supported the voxelwise results, revealing significant FA alterations in the left SLF and CST in patients only and significant MD alterations in MTLE patients and their unaffected siblings. The diffusion scalars of MTLE patients and their asymptomatic siblings were highly correlated in the SLF and CST ipsilateral to patients' sides of seizure onset. SIGNIFICANCE: These findings confirm the presence of microstructural WM alterations in patients with MRI-negative MTLE and provide preliminary support for a diffusion-based endophenotype in the disorder. Further studies of narrow-sense heritability in larger cohorts of first-degree relatives of MTLE patients are required to confirm these results.


Asunto(s)
Cuerpo Calloso/patología , Epilepsia del Lóbulo Temporal/diagnóstico , Lateralidad Funcional/fisiología , Tractos Piramidales/patología , Sustancia Blanca/patología , Adulto , Anisotropía , Estudios de Casos y Controles , Imagen de Difusión Tensora , Femenino , Humanos , Procesamiento de Imagen Asistido por Computador , Masculino , Persona de Mediana Edad , Análisis Multivariante , Hermanos , Subtálamo/patología
12.
Dig Surg ; 32(5): 397-408, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26315570

RESUMEN

BACKGROUND: Positron emission tomography and computed tomography (PET-CT) is established in the staging of esophageal cancer. In this study, an MRI protocol was designed to emulate the anatomical (T1-weighed (T1W) and T2W imaging) and functional information (diffusion-weighted imaging) provided by PET-CT. METHODS: In all, 49 patients with carcinoma of the esophagus underwent PET-CT and whole-body MRI (WBMRI). WBMRI was carried out using dedicated sequences tailored to detect metastatic disease at each area corresponding to the anatomical coverage of PET-CT. Nodal status was determined from histopathology and endoscopic ultrasound biopsy (EUS). RESULTS: PET-CT and WBMRI identified the primary tumor in 46/49 (94%) and 48/49 (98%) patients, respectively. Nodal analysis in patients undergoing surgery (n = 18) yielded sensitivity, specificity, positive predictive value (PPV), negative predictive value (NPV) and accuracy of 27, 100, 100, 47 and 56% for PET-CT, compared with 30, 100, 100, 53 and 61% for WBMRI. When nodal analysis included both surgical specimens and EUS criteria (n = 39), sensitivity, specificity, PPV, NPV and accuracy were 46, 91, 93, 40 and 59% for PET-CT compared with 59, 92, 94, 50 and 67% for WBMRI. Both imaging modalities identified distant metastases in 2 patients. CONCLUSION: WBMRI has similar accuracy to PET-CT in detecting the primary tumor, nodal deposits and for exclusion of systemic metastatic disease.


Asunto(s)
Adenocarcinoma/patología , Carcinoma de Células Escamosas/patología , Neoplasias Esofágicas/patología , Imagen por Resonancia Magnética/métodos , Imagen Multimodal/métodos , Tomografía de Emisión de Positrones/métodos , Tomografía Computarizada por Rayos X/métodos , Adenocarcinoma/diagnóstico por imagen , Adulto , Anciano , Anciano de 80 o más Años , Carcinoma de Células Escamosas/diagnóstico por imagen , Neoplasias Esofágicas/diagnóstico por imagen , Femenino , Fluorodesoxiglucosa F18 , Humanos , Masculino , Persona de Mediana Edad , Estadificación de Neoplasias , Estudios Prospectivos , Radiofármacos , Sensibilidad y Especificidad
13.
Med Phys ; 51(2): 1074-1082, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38116822

RESUMEN

BACKGROUND: The imaging of patients with implanted electrically-conductive devices via magnetic resonance imaging at ultra-high fields is hampered by uncertainties relating to the potential for inducing tissue heating adjacent to the implant due to coupling of energy from the incident electromagnetic field into the implant. Existing data in the peer-reviewed literature of comparisons across field strengths of tissue heating and its surrogate, the specific absorption rate (SAR), is scarce and contradictory, leading to further doubts pertaining to the safety of imaging patients with such devices. PURPOSE: The radiofrequency-induced SAR adjacent to orthopedic screws of varying length and at frequencies of 64 to 498 MHz was investigated via full-wave electromagnetic simulations, to provide an accurate comparison of SAR across MRI field strengths. METHODS: Dipole antennas were used for RF transmission to achieve a uniform electric field tangential to the screws located 120 mm above the antenna midpoints, embedded in a bone-mimicking material. The input power to the antennas was constrained to achieve the following targets without the screw present: (i) E = 100 V/m, (ii) B1 +  = 2 µT, and (iii) global-average-SAR = 3.2 W/kg. Simulations were performed with a spatial resolution of 0.2 mm in the volume surrounding the screws, resulting in 76-137 MCells, noting the maximum 1 g-averaged SAR value in each case. Simulations were repeated at 128 and 297 MHz for screws embedded in muscle tissue. RESULTS: The peak SAR, occurring at the resonant screw length, substantially increased as the frequency decreased when the input power to the dipole antenna was constrained to achieve constant electric field in background tissue at the screws' locations. A similar pattern was observed when constraining input power to achieve constant B1 + and global-average-SAR. The dielectric properties of the tissue in which the screws were embedded dominated the SAR comparisons between 297 and 128 MHz. CONCLUSIONS: The study design allowed for a direct comparison to be performed of SAR across frequencies and implant lengths without the confounding effect of variable incident electric field. Lower frequencies produced substantially larger SAR values for implants approaching the resonant length for the worst-case uniform incident electric field along the screws' length. The data may inform risk-benefit assessments for imaging patients with orthopedic implants at the new clinical field strength of 7 Tesla.


Asunto(s)
Campos Electromagnéticos , Ondas de Radio , Humanos , Simulación por Computador , Prótesis e Implantes , Imagen por Resonancia Magnética , Fantasmas de Imagen
14.
J Neurol Neurosurg Psychiatry ; 84(7): 766-73, 2013 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-23085933

RESUMEN

BACKGROUND: Body region of onset and functional disability are key components of disease heterogeneity in amyotrophic lateral sclerosis (ALS). OBJECTIVES: To evaluate patterns of grey matter pathology in the motor cortex and correlate focal structural changes with functional disability. METHODS: We conducted a single-centre neuroimaging study of a cohort of 33 cognitively normal patients with amyotrophic lateral sclerosis (ALS) and 44 healthy controls. A voxel-wise generalised linear model was used to investigate the distribution of disease burden within the motor cortex in relation to clinical disability. RESULTS: Patients with bulbar onset have bilateral focal atrophy in the bulbar segment of the motor homunculus compared with patients with limb onset who have focal cortical changes in the limb segment of their motor strip. Furthermore, the extent to which different body regions are affected in ALS corresponds to the extent of focal grey matter loss in the primary motor cortex. Cortical ALS pathology also extends beyond the motor cortex affecting frontal, occipital and temporal regions. CONCLUSIONS: Focal grey matter atrophy within the motor homunculus corresponds with functional disability in ALS. The findings support the existing concepts of cortical focality and motor phenotype heterogeneity in ALS.


Asunto(s)
Esclerosis Amiotrófica Lateral/patología , Encéfalo/patología , Corteza Cerebral/patología , Neuroimagen/métodos , Edad de Inicio , Anciano , Esclerosis Amiotrófica Lateral/fisiopatología , Atrofia , Estudios de Cohortes , Interpretación Estadística de Datos , Escolaridad , Femenino , Humanos , Procesamiento de Imagen Asistido por Computador , Irlanda , Imagen por Resonancia Magnética , Masculino , Bulbo Raquídeo/patología , Persona de Mediana Edad , Corteza Motora/patología , Movimiento , Pruebas Neuropsicológicas , Fenotipo , Sistema de Registros
15.
J Psychiatry Neurosci ; 38(2): 117-28, 2013 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-23010257

RESUMEN

BACKGROUND: Family history of major depressive disorder (MDD) increases individuals' vulnerability to depression and alters the way depression manifests itself. Emotion processing and attention shifting are functions altered by MDD and family history of the disease; therefore, it is important to recognize the neural correlates of these functions in association with both factors. METHODS: Our study determines neural correlates of emotion processing and attention shifting for healthy individuals and patients with MDD with and without family history of depression. We compared the performance and neural activity in a functional magnetic resonance imaging experiment examining emotion processing and attention shifting in all participants. RESULTS: Our sample included 4 study groups: healthy controls without family history of depression (n = 25), patients with MDD without family history of the disease (n = 20), unaffected healthy first-degree relatives of patients with MDD (n = 21) and patients with MDD with family history of MDD (n = 30). Compared with healthy controls, unaffected first-degree relatives overactivate the somatosensory cortex and the attention controlling areas during both emotion processing and attention shifting. Patients with family history of MDD have stronger neural activation in subcortical areas during shifting attention from negative stimuli. Patients without family history of MDD have less activation in the paralimbic regions and more activation in core limbic areas, especially during emotion processing. LIMITATIONS: The conclusions about the intergroup differences in activation can be drawn only about neural areas engaged in the task. CONCLUSION: Unaffected first-degree relatives of patients with MDD overreact to external emotional cues and compensate for the vulnerability with increased involvement of executive control. Patients with a family history of MDD have less executive control over their attentional shifts in the face of negative stimuli. Patients without a family history of MDD process emotional stimuli in a more visceral way than controls.


Asunto(s)
Atención/fisiología , Cerebro/fisiología , Trastorno Depresivo Mayor/fisiopatología , Emociones/fisiología , Adulto , Anciano , Mapeo Encefálico/métodos , Estudios de Casos y Controles , Señales (Psicología) , Trastorno Depresivo Mayor/genética , Función Ejecutiva/fisiología , Femenino , Humanos , Imagen por Resonancia Magnética , Masculino , Persona de Mediana Edad , Red Nerviosa/fisiología , Corteza Somatosensorial/fisiología , Adulto Joven
16.
Med Phys ; 50(2): 694-701, 2023 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-36301228

RESUMEN

BACKGROUND: 7T MRI offers significant benefits to spatial and contrast resolution compared to lower field strengths. This superior image quality can help better delineate targets in stereotactic neurosurgical procedures; however, the potential for increased geometric distortions at 7T has impaired its widespread use for these applications. Image geometric distortions can be due to distortions of B0 arising from tissue magnetic susceptibility effects or inherent field inhomogeneities, and nonlinearity of the magnetic field gradients. PURPOSE: The purpose of this study was to investigate the use of 7T MRI for neurosurgical frameless stereotactic navigation procedures. Image geometric distortions at the skin surface in 7T images were minimized and compared to results from clinical 3T frameless imaging protocols. METHODS: A 3D-printed grid phantom filled with oil was designed to perform a fine calibration of the 7T imaging gradients, and an oil-filled head phantom with internal targets was used to determine ground truth (from computed tomography [CT]) positioning errors. Three volunteers and the head phantom were imaged consecutively at 3T and 7T. Ten skin-adhesive fiducial markers were placed on each subject's exposed skin surface at standard clinical placement locations for frameless procedures. Imaging sequences included MPRAGE (three bandwidths at 7T: 400, 690, and 1020 Hz/pixel, and one at 3T: 400 Hz/pixel), T2 SPACE, and T2 SPACE FLAIR acquisitions. An additional GRE field map was acquired on both scanners using a multi-echo GRE sequence. Custom Matlab code was used to perform additional distortion correction of the images using the unwrapped field maps. Fiducial localization was performed with 3D Slicer, with absolute fiducial positioning errors determined in phantom experiments following rigid registration to the CT images. For human experiments, 3T and 7T images were registered and relative differences in fiducial locations were compared using two-tailed paired t-tests. RESULTS: Phantom measurements at 7T yielded gradient distance scaling errors of 1.1%, 2.2%, and 1.0% along the x-, y-, and z-axes, respectively. These system miscalibrations were traced back to phantom manufacturing deviations in the sphericity of the vendor's gradient calibration phantom. Correction factors along each gradient axis were applied, and afterward, geometric distortions of less than 1 mm were obtained in the 7T MR head phantom images for the 1020 Hz/pixel bandwidth MPRAGE sequence. For the human subjects, four fiducial locations were excluded from the analysis due to patient positioning differences. Differences between 3T and 7T MPRAGE with low/medium/high bandwidth were 2.2 /2.6/2.3 mm, respectively, before the correction, reducing to 1.6/1.3/1.0 mm after the correction (p < 0.001). T2 SPACE and T2 SPACE FLAIR yielded a similar pattern when the correction was applied, decreasing from 2.1 to 0.8 mm, and 2.6 to 1.0 mm, respectively. CONCLUSIONS: 7T MRI can be used to perform frameless presurgical planning with skin-adhesive fiducials. Geometric distortions can be reduced to a clinically relevant level (errors < âˆ¼1 mm) with no significant susceptibility-related distortions, by using high receiver bandwidth, ensuring gradients are properly calibrated, and placing skin fiducials in areas where distortions from patient positioning are minimal.


Asunto(s)
Imagenología Tridimensional , Tomografía Computarizada por Rayos X , Humanos , Imagenología Tridimensional/métodos , Imagen por Resonancia Magnética/métodos , Fantasmas de Imagen
17.
Diagnostics (Basel) ; 13(11)2023 May 27.
Artículo en Inglés | MEDLINE | ID: mdl-37296724

RESUMEN

Cardiovascular pathology is the leading cause of death and disability in the Western world, and current diagnostic testing usually evaluates the anatomy of the vessel to determine if the vessel contains blockages and plaques. However, there is a growing school of thought that other measures, such as wall shear stress, provide more useful information for earlier diagnosis and prediction of atherosclerotic related disease compared to pulsed-wave Doppler ultrasound, magnetic resonance angiography, or computed tomography angiography. A novel algorithm for quantifying wall shear stress (WSS) in atherosclerotic plaque using diagnostic ultrasound imaging, called Multifrequency ultrafast Doppler spectral analysis (MFUDSA), is presented. The development of this algorithm is presented, in addition to its optimisation using simulation studies and in-vitro experiments with flow phantoms approximating the early stages of cardiovascular disease. The presented algorithm is compared with commonly used WSS assessment methods, such as standard PW Doppler, Ultrafast Doppler, and Parabolic Doppler, as well as plane-wave Doppler. Compared to an equivalent processing architecture with one-dimensional Fourier analysis, the MFUDSA algorithm provided an increase in signal-to-noise ratio (SNR) by a factor of 4-8 and an increase in velocity resolution by a factor of 1.10-1.35. The results indicated that MFUDSA outperformed the others, with significant differences detected between the typical WSS values of moderate disease progression (p = 0.003) and severe disease progression (p = 0.001). The algorithm demonstrated an improved performance for the assessment of WSS and has potential to provide an earlier diagnosis of cardiovascular disease than current techniques allow.

18.
Magn Reson Med ; 67(3): 740-9, 2012 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-21678490

RESUMEN

A technique for noninvasively quantifying the concentration of sodium ((23) Na) ions was applied to the study of ischemic stroke. (23) Na-magnetic resonance imaging techniques have shown considerable potential for measuring subtle changes in ischemic tissue, although studies to date have suffered primarily from poor signal/noise ratio. In this study, accurate quantification of tissue sodium concentration (TSC) was achieved in (23) Na images with voxel sizes of 1.2 µL acquired in 10 min. The evolution of TSC was investigated from 0.5 to 8 h in focal cortical and subcortical ischemic tissue following permanent middle cerebral artery occlusion in the rat (n = 5). Infarct volumes determined from TSC measurements correlated significantly with histology (P = 0.0006). A delayed linear model was fitted to the TSC time course data in each voxel, which revealed that the TSC increase was more immediate (0.2 ± 0.1 h delay time) in subcortical ischemic tissue, whereas it was delayed by 1.6 ± 0.5 h in ischemic cortex (P = 0.0002). No significant differences (P = 0.5) were measured between TSC slope rates in cortical (10.2 ± 1.1 mM/h) and subcortical (9.7 ± 1.1 mM/h) ischemic tissue. The data suggest that any TSC increase measured in ischemic tissue indicates infarction (core) and regions exhibiting a delay to TSC increase indicate potentially salvageable tissue (penumbra).


Asunto(s)
Isquemia Encefálica/metabolismo , Imagen por Resonancia Magnética/métodos , Sodio/metabolismo , Accidente Cerebrovascular/metabolismo , Enfermedad Aguda , Análisis de Varianza , Animales , Isquemia Encefálica/patología , Circulación Cerebrovascular , Modelos Animales de Enfermedad , Procesamiento de Imagen Asistido por Computador/métodos , Imagen por Resonancia Magnética/instrumentación , Masculino , Ratas , Ratas Sprague-Dawley , Accidente Cerebrovascular/patología , Factores de Tiempo
19.
Mol Vis ; 18: 2538-60, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-23112569

RESUMEN

Imaging the eye with magnetic resonance imaging (MRI) has proved difficult due to the eye's propensity to move involuntarily over typical imaging timescales, obscuring the fine structure in the eye due to the resulting motion artifacts. However, advances in MRI technology help to mitigate such drawbacks, enabling the acquisition of high spatiotemporal resolution images with a variety of contrast mechanisms. This review aims to classify the MRI techniques used to date in clinical and preclinical ophthalmologic studies, describing the qualitative and quantitative information that may be extracted and how this may inform on ocular pathophysiology.


Asunto(s)
Oftalmopatías/diagnóstico , Imagen por Resonancia Magnética/instrumentación , Imagen por Resonancia Magnética/métodos , Oftalmología/instrumentación , Oftalmología/métodos , Animales , Artefactos , Medios de Contraste , Movimientos Oculares/fisiología , Humanos , Ratas
20.
Amyotroph Lateral Scler ; 13(5): 407-15, 2012 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-22329869

RESUMEN

Despite considerable involvement of the spinal cord in amyotrophic lateral sclerosis (ALS), current biomarker research is primarily centred on brain imaging and CSF proteomics. In clinical practice, spinal cord imaging in ALS is performed primarily to rule out alternative conditions in the diagnostic phase of the disease. Quantitative spinal cord imaging has traditionally been regarded as challenging, as it requires high spatial resolution while minimizing partial volume effects, physiological motion and susceptibility distortions. In recent years however, as acquisition and post-processing methods have been perfected, a number of exciting and promising quantitative spinal imaging and electrophysiology techniques have been developed. We performed a systematic review of the trends, methodologies, limitations and conclusions of recent spinal cord studies in ALS to explore the diagnostic and prognostic potential of spinal markers. Novel corrective techniques for quantitative spinal cord imaging are systematically reviewed. Recent findings demonstrate that imaging techniques previously used in brain imaging, such as diffusion tensor, functional and metabolic imaging can now be successfully applied to the human spinal cord. Optimized electrophysiological approaches make the non-invasive assessment of corticospinal pathways possible, and multimodal spinal techniques are likely to increase the specificity and sensitivity of proposed spinal markers. In conclusion, spinal cord imaging is an emerging area of ALS biomarker research. Novel quantitative spinal modalities have already been successfully used in ALS animal models and have the potential for development into sensitive ALS biomarkers in humans.


Asunto(s)
Esclerosis Amiotrófica Lateral/diagnóstico , Biomarcadores/metabolismo , Diagnóstico por Imagen/métodos , Modelos Animales de Enfermedad , Esclerosis Amiotrófica Lateral/metabolismo , Esclerosis Amiotrófica Lateral/fisiopatología , Animales , Humanos , Médula Espinal/metabolismo , Médula Espinal/fisiopatología , Estimulación Magnética Transcraneal/métodos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA