Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 120
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
IEEE Trans Nucl Sci ; 66(6): 960-968, 2019 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-31327872

RESUMEN

Due to pulse pileup, photon counting detectors (PCDs) suffer from count loss and energy distortion when operating in high count rate environments. In this paper, we studied the pulse pileup of a double-sided silicon strip detector (DSSSD) to evaluate its potential application in a mammography system. We analyzed the pulse pileup using pulses of varied shapes, where the shape of the pulse depends on the location of photon interaction within the detector. To obtain the shaped pulses, first, transient currents for photons interacting at different locations were simulated using a Technology Computer-Aided Design (TCAD) software. Next, the currents were shaped by a CR-RC2 shaping circuit, calculated using Simulink. After obtaining these pulses, both the different orders of pileup and the energy spectrum were calculated by taking into account the following two factors: 1) spatial distribution of photon interactions within the detector, and 2) time interval distribution between successive photons under a given photon flux. We found that for a DSSSD with thickness of 300 µm, pitch of 25 µm and strip length of 1 cm, under a bias voltage of 50 V, the variable pulse shape model predicts the fraction free of pileup can be > 90 % under a photon flux of 3.75 Mcps/mm2. The double-sided silicon-strip detector is a promising candidate for digital mammography applications.

2.
J Xray Sci Technol ; 25(6): 869-885, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28582954

RESUMEN

A new scatter estimation algorithm with a concept of virtual scatter modulation for X-ray scatter correction using primary modulator is proposed to reduce the aliasing errors in the estimated scatter. Virtual scatter modulation can be realized through dividing the measured primary-modulated image by the measured modulation function. After the division, the aggravation of the aliasing of primary due to the non-uniformity of the modulation function is largely transferred to that of scatter. Since scatter in general has less high frequencies than primary does, the aggravation of its aliasing is expected to be weaker, and therefore the overall aliasing can be reduced. A CatPhan©600 phantom and an anthropomorphic thorax phantom are scanned on a tabletop X-ray cone-beam computed tomography system to validate our proposed algorithm. On the Catphan phantom, the oscillations that are clearly observed in the central region of the Catphan scatter profile estimated using the original primary-modulation algorithm, are mostly eliminated with the proposed scatter modulation algorithm, leading to less residual artifacts and better CT number uniformity in the reconstructed image. Compared with 38.9 HU of CT nonuniformity in a selected uniform region when the primary-modulation algorithm is used, the new algorithm significantly reduces it to 4.5 HU, reaching the same level of uniformity as the ground truth reference. On the thorax phantom, overall better CT number uniformity is also achieved.


Asunto(s)
Tomografía Computarizada de Haz Cónico/métodos , Procesamiento de Imagen Asistido por Computador/métodos , Fantasmas de Imagen , Interpretación de Imagen Radiográfica Asistida por Computador/métodos , Dispersión de Radiación , Algoritmos
3.
J Cardiovasc Electrophysiol ; 25(1): 74-83, 2014 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-24102965

RESUMEN

BACKGROUND: With increasing complexity in electrophysiology (EP) procedures, the use of electroanatomic mapping systems (EAMS) as a supplement to fluoroscopy has become common practice. This is the first study that evaluates spatial and point localization accuracy for 2 current EAMS, CARTO3(®) (Biosense Webster, Diamond Bar, CA, USA) and EnSite Velocity(®) (St. Jude Medical Inc., St. Paul, MN, USA), and for a novel overlay guidance (OG) software (Siemens AG, Forchheim, Germany) in a phantom experiment. METHODS AND RESULTS: A C-arm CT scan was performed on an acrylic phantom containing holes and location markers. Spatial accuracy was assessed for each system using distance measurements involving known markers inside the phantom and properly placed catheters. Anatomical maps of the phantom were acquired by each EAMS, whereas the 3D-based OG software superimposed an overlay image of the phantom, segmented from the C-arm CT data set, onto biplane fluoroscopy. Registration processes and landmark measurements quantitatively assessed the spatial accuracy of each technology with respect to the ground truth phantom. Point localization performance was 0.49 ± 0.25 mm in OG, 0.46 ± 0.17 mm in CARTO3(®) and 0.79 ± 0.83 mm in EnSite(®) . The registration offset between virtual visualization and reality was 1.10 ± 0.52 mm in OG, 1.62 ± 0.77 mm in CARTO3(®) and 2.02 ± 1.21 mm in EnSite(®) . The offset to phantom C-arm CT landmark measurements was 0.30 ± 0.26 mm in OG, 0.24 ± 0.21 mm in CARTO3(®) and 1.32 ± 0.98 mm in EnSite(®) . CONCLUSIONS: Each of the evaluated EP guidance systems showed a high level of accuracy; the observed offsets between the virtual 3D visualization and the real phantom were below a clinically relevant threshold of 3 mm.


Asunto(s)
Mapeo del Potencial de Superficie Corporal/normas , Ablación por Catéter/normas , Técnicas Electrofisiológicas Cardíacas/normas , Fluoroscopía/normas , Imagenología Tridimensional/normas , Mapeo del Potencial de Superficie Corporal/métodos , Ablación por Catéter/métodos , Técnicas Electrofisiológicas Cardíacas/métodos , Fluoroscopía/métodos , Humanos , Imagenología Tridimensional/métodos
4.
Comput Biol Med ; 171: 108199, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38394801

RESUMEN

Traditional navigational bronchoscopy procedures rely on preprocedural computed tomography (CT) and intraoperative chest radiography and cone-beam CT (CBCT) to biopsy peripheral lung lesions. This navigational approach is challenging due to the projective nature of radiography, and the high radiation dose, long imaging time, and large footprints of CBCT. Digital tomosynthesis (DTS) is considered an attractive alternative combining the advantages of radiography and CBCT. Only the depth resolution cannot match a full CBCT image due to the limited angle acquisition. To address this issue, preoperative CT is a good auxiliary in guiding bronchoscopy interventions. Nevertheless, CT-to-body divergence caused by anatomic changes and respiratory motion, hinders the effective use of CT imaging. To mitigate CT-to-body divergence, we propose a novel deformable 3D/3D CT-to-DTS registration algorithm employing a multistage, multiresolution approach and using affine and elastic B-spline transformation models with bone and lung mask images. A multiresolution strategy with a Gaussian image pyramid and a multigrid strategy within the B-spline model are applied. The normalized correlation coefficient is included in the cost function for the affine model and a multimetric weighted cost function is used for the B-spline model, with weights determined heuristically. Tested on simulated and real patient bronchoscopy data, the algorithm yields promising results. Assessed qualitatively by visual inspection and quantitatively by computing the Dice coefficient (DC) and the average symmetric surface distance (ASSD), the algorithm achieves mean DC of 0.82±0.05 and 0.74±0.05, and mean ASSD of 0.65±0.29mm and 0.93±0.43mm for simulated and real data, respectively. This algorithm lays the groundwork for CT-aided intraoperative DTS imaging in image-guided bronchoscopy interventions with future studies focusing on automated metric weight setting.


Asunto(s)
Broncoscopía , Intensificación de Imagen Radiográfica , Humanos , Intensificación de Imagen Radiográfica/métodos , Tomografía Computarizada por Rayos X/métodos , Tomografía Computarizada de Haz Cónico/métodos , Algoritmos
5.
Med Phys ; 50(8): e904-e945, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-36710257

RESUMEN

This report reviews the image acquisition and reconstruction characteristics of C-arm Cone Beam Computed Tomography (C-arm CBCT) systems and provides guidance on quality control of C-arm systems with this volumetric imaging capability. The concepts of 3D image reconstruction, geometric calibration, image quality, and dosimetry covered in this report are also pertinent to CBCT for Image-Guided Radiation Therapy (IGRT). However, IGRT systems introduce a number of additional considerations, such as geometric alignment of the imaging at treatment isocenter, which are beyond the scope of the charge to the task group and the report. Section 1 provides an introduction to C-arm CBCT systems and reviews a variety of clinical applications. Section 2 briefly presents nomenclature specific or unique to these systems. A short review of C-arm fluoroscopy quality control (QC) in relation to 3D C-arm imaging is given in Section 3. Section 4 discusses system calibration, including geometric calibration and uniformity calibration. A review of the unique approaches and challenges to 3D reconstruction of data sets acquired by C-arm CBCT systems is give in Section 5. Sections 6 and 7 go in greater depth to address the performance assessment of C-arm CBCT units. First, Section 6 describes testing approaches and phantoms that may be used to evaluate image quality (spatial resolution and image noise and artifacts) and identifies several factors that affect image quality. Section 7 describes both free-in-air and in-phantom approaches to evaluating radiation dose indices. The methodologies described for assessing image quality and radiation dose may be used for annual constancy assessment and comparisons among different systems to help medical physicists determine when a system is not operating as expected. Baseline measurements taken either at installation or after a full preventative maintenance service call can also provide valuable data to help determine whether the performance of the system is acceptable. Collecting image quality and radiation dose data on existing phantoms used for CT image quality and radiation dose assessment, or on newly developed phantoms, will inform the development of performance criteria and standards. Phantom images are also useful for identifying and evaluating artifacts. In particular, comparing baseline data with those from current phantom images can reveal the need for system calibration before image artifacts are detected in clinical practice. Examples of artifacts are provided in Sections 4, 5, and 6.


Asunto(s)
Tomografía Computarizada de Haz Cónico , Radiometría , Tomografía Computarizada de Haz Cónico/métodos , Imagenología Tridimensional , Fantasmas de Imagen , Procesamiento de Imagen Asistido por Computador/métodos
6.
Med Phys ; 39(1): 18-27, 2012 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-22225271

RESUMEN

PURPOSE: Digital a-Si flat panel (FP) x-ray detectors can exhibit detector lag, or residual signal, of several percent that can cause ghosting in projection images or severe shading artifacts, known as the radar artifact, in cone-beam computed tomography (CBCT) reconstructions. A major contributor to detector lag is believed to be defect states, or traps, in the a-Si layer of the FP. Software methods to characterize and correct for the detector lag exist, but they may make assumptions such as system linearity and time invariance, which may not be true. The purpose of this work is to investigate a new hardware based method to reduce lag in an a-Si FP and to evaluate its effectiveness at removing shading artifacts in CBCT reconstructions. The feasibility of a novel, partially hardware based solution is also examined. METHODS: The proposed hardware solution for lag reduction requires only a minor change to the FP. For pulsed irradiation, the proposed method inserts a new operation step between the readout and data collection stages. During this new stage the photodiode is operated in a forward bias mode, which fills the defect states with charge. A Varian 4030CB panel was modified to allow for operation in the forward bias mode. The contrast of residual lag ghosts was measured for lag frames 2 and 100 after irradiation ceased for standard and forward bias modes. Detector step response, lag, SNR, modulation transfer function (MTF), and detective quantum efficiency (DQE) measurements were made with standard and forward bias firmware. CBCT data of pelvic and head phantoms were also collected. RESULTS: Overall, the 2nd and 100th detector lag frame residual signals were reduced 70%-88% using the new method. SNR, MTF, and DQE measurements show a small decrease in collected signal and a small increase in noise. The forward bias hardware successfully reduced the radar artifact in the CBCT reconstruction of the pelvic and head phantoms by 48%-81%. CONCLUSIONS: Overall, the forward bias method has been found to greatly reduce detector lag ghosts in projection data and the radar artifact in CBCT reconstructions. The method is limited to improvements of the a-Si photodiode response only. A future hybrid mode may overcome any limitations of this method.


Asunto(s)
Artefactos , Intensificación de Imagen Radiográfica/instrumentación , Intensificación de Imagen Radiográfica/métodos , Procesamiento de Señales Asistido por Computador/instrumentación , Tomografía Computarizada por Rayos X/instrumentación , Pantallas Intensificadoras de Rayos X , Diseño de Equipo , Análisis de Falla de Equipo , Reproducibilidad de los Resultados , Sensibilidad y Especificidad
7.
Med Phys ; 39(9): 5567-83, 2012 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-22957623

RESUMEN

PURPOSE: Combining x-ray fluoroscopy and MR imaging systems for guidance of interventional procedures has become more commonplace. By designing an x-ray tube that is immune to the magnetic fields outside of the MR bore, the two systems can be placed in close proximity to each other. A major obstacle to robust x-ray tube design is correcting for the effects of the magnetic fields on the x-ray tube focal spot. A potential solution is to design active shielding that locally cancels the magnetic fields near the focal spot. METHODS: An iterative optimization algorithm is implemented to design resistive active shielding coils that will be placed outside the x-ray tube insert. The optimization procedure attempts to minimize the power consumption of the shielding coils while satisfying magnetic field homogeneity constraints. The algorithm is composed of a linear programming step and a nonlinear programming step that are interleaved with each other. The coil results are verified using a finite element space charge simulation of the electron beam inside the x-ray tube. To alleviate heating concerns an optimized coil solution is derived that includes a neodymium permanent magnet. Any demagnetization of the permanent magnet is calculated prior to solving for the optimized coils. The temperature dynamics of the coil solutions are calculated using a lumped parameter model, which is used to estimate operation times of the coils before temperature failure. RESULTS: For a magnetic field strength of 88 mT, the algorithm solves for coils that consume 588 A∕cm(2). This specific coil geometry can operate for 15 min continuously before reaching temperature failure. By including a neodymium magnet in the design the current density drops to 337 A∕cm(2), which increases the operation time to 59 min. Space charge simulations verify that the coil designs are effective, but for oblique x-ray tube geometries there is still distortion of the focal spot shape along with deflections of approximately 3 mm in the radial and circumferential directions on the anode. CONCLUSIONS: Active shielding is an attractive solution for correcting the effects of magnetic fields on the x-ray focal spot. If extremely long fluoroscopic exposure times are required, longer operation times can be achieved by including a permanent magnet with the active shielding design.


Asunto(s)
Campos Magnéticos , Imagen por Resonancia Magnética/instrumentación , Estudios de Factibilidad , Imanes , Temperatura , Rayos X
8.
Med Phys ; 39(10): 6035-47, 2012 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-23039642

RESUMEN

PURPOSE: Detector lag, or residual signal, in a-Si flat-panel (FP) detectors can cause significant shading artifacts in cone-beam computed tomography reconstructions. To date, most correction models have assumed a linear, time-invariant (LTI) model and correct lag by deconvolution with an impulse response function (IRF). However, the lag correction is sensitive to both the exposure intensity and the technique used for determining the IRF. Even when the LTI correction that produces the minimum error is found, residual artifact remains. A new non-LTI method was developed to take into account the IRF measurement technique and exposure dependencies. METHODS: First, a multiexponential (N = 4) LTI model was implemented for lag correction. Next, a non-LTI lag correction, known as the nonlinear consistent stored charge (NLCSC) method, was developed based on the LTI multiexponential method. It differs from other nonlinear lag correction algorithms in that it maintains a consistent estimate of the amount of charge stored in the FP and it does not require intimate knowledge of the semiconductor parameters specific to the FP. For the NLCSC method, all coefficients of the IRF are functions of exposure intensity. Another nonlinear lag correction method that only used an intensity weighting of the IRF was also compared. The correction algorithms were applied to step-response projection data and CT acquisitions of a large pelvic phantom and an acrylic head phantom. The authors collected rising and falling edge step-response data on a Varian 4030CB a-Si FP detector operating in dynamic gain mode at 15 fps at nine incident exposures (2.0%-92% of the detector saturation exposure). For projection data, 1st and 50th frame lag were measured before and after correction. For the CT reconstructions, five pairs of ROIs were defined and the maximum and mean signal differences within a pair were calculated for the different exposures and step-response edge techniques. RESULTS: The LTI corrections left residual 1st and 50th frame lag up to 1.4% and 0.48%, while the NLCSC lag correction reduced 1st and 50th frame residual lags to less than 0.29% and 0.0052%. For CT reconstructions, the NLCSC lag correction gave an average error of 11 HU for the pelvic phantom and 3 HU for the head phantom, compared to 14-19 HU and 2-11 HU for the LTI corrections and 15 HU and 9 HU for the intensity weighted non-LTI algorithm. The maximum ROI error was always smallest for the NLCSC correction. The NLCSC correction was also superior to the intensity weighting algorithm. CONCLUSIONS: The NLCSC lag algorithm corrected for the exposure dependence of lag, provided superior image improvement for the pelvic phantom reconstruction, and gave similar results to the best case LTI results for the head phantom. The blurred ring artifact that is left over in the LTI corrections was better removed by the NLCSC correction in all cases.


Asunto(s)
Algoritmos , Tomografía Computarizada de Haz Cónico/métodos , Dinámicas no Lineales , Silicio , Calibración
9.
Med Phys ; 39(2): 825-31, 2012 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-22320792

RESUMEN

PURPOSE: X-ray CT measures the attenuation of polychromatic x-rays through an object. The raw data acquired, which are the negative logarithm of the relative x-ray intensity behind the patient, must undergo water precorrection to linearize the measurement and to convert them into line integrals that are ready for reconstruction. The function to linearize the measured projection data depends on the detected spectrum of the ray. This spectrum may vary as a function of the detector position, e.g., in cases where the heel effect becomes relevant, where a bow-tie filter introduces channel-dependent beam hardening, or where a primary modulator is used to modulate the primary intensity of the spectrum. METHODS: The authors propose a new approach that allows to handle these effects in a highly convenient way. Their new empirical cupping correction for primary modulation (ECCP) corrects for artifacts, such as cupping artifacts or ring artifacts, which are induced by nonlinearities in the projection data due to spatially varying pre- or postfiltration of the x-rays. To do so, ECCP requires only a simple scan of a homogeneous phantom of nearly arbitrary shape. Based on this information, coefficients of a polynomial series are calculated and stored for later use. RESULTS: Physical measurements demonstrate the quality of the precorrection that can be achieved using ECCP to remove the cupping artifacts and to obtain well-calibrated CT values even in cases of strong primary modulation. A combination of ECCP with analytical techniques yielding a hybrid cupping correction method is possible and allows for channel-dependent correction functions. CONCLUSION: The proposed ECCP method is a very effective and easy to incorporate approach that compensates for even strong detector channel-dependent changes of the detected spectrum. © 2011 American Association of Physicists in Medicine.


Asunto(s)
Algoritmos , Artefactos , Aumento de la Imagen/instrumentación , Aumento de la Imagen/métodos , Tomografía Computarizada por Rayos X/instrumentación , Tomografía Computarizada por Rayos X/métodos , Reproducibilidad de los Resultados , Sensibilidad y Especificidad
10.
Biomed Phys Eng Express ; 8(3)2022 04 07.
Artículo en Inglés | MEDLINE | ID: mdl-34714256

RESUMEN

Purpose:Since guidance based on x-ray imaging is an integral part of interventional procedures, continuous efforts are taken towards reducing the exposure of patients and clinical staff to ionizing radiation. Even though a reduction in the x-ray dose may lower associated radiation risks, it is likely to impair the quality of the acquired images, potentially making it more difficult for physicians to carry out their procedures.Method:We present a robust learning-based denoising strategy involving model-based simulations of low-dose x-ray images during the training phase. The method also utilizes a data-driven normalization step-based on an x-ray imaging model-to stabilize the mixed signal-dependent noise associated with x-ray images. We thoroughly analyze the method's sensitivity to a mismatch in dose levels used for training and application. We also study the impact of differing noise models used when training for low and very low-dose x-ray images on the denoising results.Results:A quantitative and qualitative analysis based on acquired phantom and clinical data has shown that the proposed learning-based strategy is stable across different dose levels and yields excellent denoising results, if an accurate noise model is applied. We also found that there can be severe artifacts when the noise characteristics of the training images are significantly different from those in the actual images to be processed. This problem can be especially acute at very low dose levels. During a thorough analysis of our experimental results, we further discovered that viewing the results from the perspective of denoising via thresholding of sub-band coefficients can be very beneficial to get a better understanding of the proposed learning-based denoising strategy.Conclusion:The proposed learning-based denoising strategy provides scope for significant x-ray dose reduction without the loss of important image information if the characteristics of noise is accurately accounted for during the training phase.


Asunto(s)
Artefactos , Tomografía Computarizada por Rayos X , Humanos , Fantasmas de Imagen , Relación Señal-Ruido , Tomografía Computarizada por Rayos X/métodos , Rayos X
11.
IEEE Trans Biomed Eng ; 69(5): 1608-1619, 2022 05.
Artículo en Inglés | MEDLINE | ID: mdl-34714730

RESUMEN

OBJECTIVE: Involuntary subject motion is the main source of artifacts in weight-bearing cone-beam CT of the knee. To achieve image quality for clinical diagnosis, the motion needs to be compensated. We propose to use inertial measurement units (IMUs) attached to the leg for motion estimation. METHODS: We perform a simulation study using real motion recorded with an optical tracking system. Three IMU-based correction approaches are evaluated, namely rigid motion correction, non-rigid 2D projection deformation and non-rigid 3D dynamic reconstruction. We present an initialization process based on the system geometry. With an IMU noise simulation, we investigate the applicability of the proposed methods in real applications. RESULTS: All proposed IMU-based approaches correct motion at least as good as a state-of-the-art marker-based approach. The structural similarity index and the root mean squared error between motion-free and motion corrected volumes are improved by 24-35% and 78-85%, respectively, compared with the uncorrected case. The noise analysis shows that the noise levels of commercially available IMUs need to be improved by a factor of 105 which is currently only achieved by specialized hardware not robust enough for the application. CONCLUSION: Our simulation study confirms the feasibility of this novel approach and defines improvements necessary for a real application. SIGNIFICANCE: The presented work lays the foundation for IMU-based motion compensation in cone-beam CT of the knee and creates valuable insights for future developments.


Asunto(s)
Tomografía Computarizada de Haz Cónico Espiral , Algoritmos , Artefactos , Tomografía Computarizada de Haz Cónico/métodos , Humanos , Procesamiento de Imagen Asistido por Computador/métodos , Rodilla/diagnóstico por imagen , Movimiento (Física) , Fantasmas de Imagen , Soporte de Peso
12.
J Med Imaging (Bellingham) ; 9(Suppl 1): 012205, 2022 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-35309720

RESUMEN

Purpose: For 50 years now, SPIE Medical Imaging (MI) conferences have been the premier forum for disseminating and sharing new ideas, technologies, and concepts on the physics of MI. Approach: Our overarching objective is to demonstrate and highlight the major trajectories of imaging physics and how they are informed by the community and science present and presented at SPIE MI conferences from its inception to now. Results: These contributions range from the development of image science, image quality metrology, and image reconstruction to digital x-ray detectors that have revolutionized MI modalities including radiography, mammography, fluoroscopy, tomosynthesis, and computed tomography (CT). Recent advances in detector technology such as photon-counting detectors continue to enable new capabilities in MI. Conclusion: As we celebrate the past 50 years, we are also excited about what the next 50 years of SPIE MI will bring to the physics of MI.

13.
Med Phys ; 49(12): 7623-7637, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-35904020

RESUMEN

PURPOSE: In radiation therapy, x-ray dose must be precisely sculpted to the tumor, while simultaneously avoiding surrounding organs at risk. This requires modulation of x-ray intensity in space and/or time. Typically, this is achieved using a multi leaf collimator (MLC)-a complex mechatronic device comprising over one hundred individually powered tungsten 'leaves' that move in or out of the radiation field as required. Here, an all-electronic x-ray collimation concept with no moving parts is presented, termed "SPHINX": Scanning Pencil-beam High-speed Intensity-modulated X-ray source. SPHINX utilizes a spatially distributed bremsstrahlung target and collimator array in conjunction with magnetic scanning of a high energy electron beam to generate a plurality of small x-ray "beamlets." METHODS: A simulation framework was developed in Topas Monte Carlo incorporating a phase space electron source, transport through user defined magnetic fields, bremsstrahlung x-ray production, transport through a SPHINX collimator, and dose in water. This framework was completely parametric, meaning a simulation could be built and run for any supplied geometric parameters. This functionality was coupled with Bayesian optimization to find the best parameter set based on an objective function which included terms to maximize dose rate for a user defined beamlet width while constraining inter-channel cross talk and electron contamination. Designs for beamlet widths of 5, 7, and 10 mm2 were generated. Each optimization was run for 300 iterations and took approximately 40 h on a 24-core computer. For the optimized 7-mm model, a simulation of all beamlets in water was carried out including a linear scanning magnet calibration simulation. Finally, a back-of-envelope dose rate formalism was developed and used to estimate dose rate under various conditions. RESULTS: The optimized 5-, 7-, and 10-mm models had beamlet widths of 5.1 , 7.2 , and 10.1 mm2 and dose rates of 3574, 6351, and 10 015 Gy/C, respectively. The reduction in dose rate for smaller beamlet widths is a result of both increased collimation and source occlusion. For the simulation of all beamlets in water, the scanning magnet calibration reduced the offset between the collimator channels and beam centroids from 2.9 ±1.9 mm to 0.01 ±0.03 mm. A slight reduction in dose rate of approximately 2% per degree of scanning angle was observed. Based on a back-of-envelope dose rate formalism, SPHINX in conjunction with next-generation linear accelerators has the potential to achieve substantially higher dose rates than conventional MLC-based delivery, with delivery of an intensity modulated 100 × 100 mm2 field achievable in 0.9 to 10.6 s depending on the beamlet widths used. CONCLUSIONS: Bayesian optimization was coupled with Monte Carlo modeling to generate SPHINX geometries for various beamlet widths. A complete Monte Carlo simulation for one of these designs was developed, including electron beam transport of all beamlets through scanning magnets, x-ray production and collimation, and dose in water. These results demonstrate that SPHINX is a promising candidate for sculpting radiation dose with no moving parts, and has the potential to vastly improve both the speed and robustness of radiotherapy delivery. A multi-beam SPHINX system may be a candidate for delivering magavoltage FLASH RT in humans.


Asunto(s)
Planificación de la Radioterapia Asistida por Computador , Radioterapia de Intensidad Modulada , Humanos , Planificación de la Radioterapia Asistida por Computador/métodos , Dosificación Radioterapéutica , Radioterapia de Intensidad Modulada/métodos , Rayos X , Teorema de Bayes , Método de Montecarlo
14.
Med Phys ; 38(7): 4174-85, 2011 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-21859019

RESUMEN

PURPOSE: Using magnetic resonance imaging (MRI) for real-time guidance during radiotherapy is an active area of research and development. One aspect of the problem is the influence of the MRI scanner, modeled here as an external magnetic field, on the medical linear accelerator (linac) components. The present work characterizes the behavior of two medical linac electron guns with external magnetic fields for in-line and perpendicular orientations of the linac with respect to the MRI scanner. METHODS: Two electron guns, Litton L-2087 and Varian VTC6364, are considered as representative models for this study. Emphasis was placed on the in-line design approach in which case the MRI scanner and the linac axes of symmetry coincide and assumes no magnetic shielding of the linac. For the in-line case, the magnetic field from a 0.5 T open MRI (GE Signa SP) magnet with a 60 cm gap between its poles was computed and used in full three dimensional (3D) space charge simulations, whereas for the perpendicular case the magnetic field was constant. RESULTS: For the in-line configuration, it is shown that the electron beam is not deflected from the axis of symmetry of the gun and the primary beam current does not vanish even at very high values of the magnetic field, e.g., 0.16 T. As the field strength increases, the primary beam current has an initial plateau of constant value after which its value decreases to a minimum corresponding to a field strength of approximately 0.06 T. After the minimum is reached, the current starts to increase slowly. For the case when the beam current computation is performed at the beam waist position the initial plateau ends at 0.016 T for Litton L-2087 and at 0.012 T for Varian VTC6364. The minimum value of the primary beam current is 27.5% of the initial value for Litton L-2087 and 22.9% of the initial value for Varian VTC6364. The minimum current is reached at 0.06 and 0.062 T for Litton L-2087 and Varian VTC6364, respectively. At 0.16 T the beam current increases to 40.2 and 31.4% from the original value of the current for Litton L-2087 and Varian VTC6364, respectively. In contrast, for the case when the electron gun is perpendicular to the magnetic field, the electron beam is deflected from the axis of symmetry even at small values of the magnetic field. As the strength of the magnetic field increases, so does the beam deflection, leading to a sharp decrease of the primary beam current which vanishes at about 0.007 T for Litton L-2087 and at 0.006 T for Varian VTC6364, respectively. At zero external field, the beam rms emittance computed at beam waist is 1.54 and 1.29n-mm-mrad for Litton L-2087 and Varian VTC6364, respectively. For the inline configuration, there are two particular values of the external field where the beam rms emittance reaches a minimum. Litton L-2087 rms emittance reaches a minimum of 0.72n and 2.01 n-mm-mrad at 0.026 and 0.132 T, respectively. Varian VTC6364 rms emittance reaches a minimum of 0.34n and 0.35n-mm-mrad at 0.028 and 0.14 T, respectively. Beam radius dependence on the external field is shown for the in-line configuration for both electron guns. CONCLUSIONS: 3D space charge simulation of two electron guns, Litton L-2087 and Varian VTC6364, were performed for in-line and perpendicular external magnetic fields. A consistent behavior of Pierce guns in external magnetic fields was proven. For the in-line configuration, the primary beam current does not vanish but a large reduction of beam current (up to 77.1%) is observed at higher field strengths; the beam directionality remains unchanged. It was shown that for a perpendicular configuration the current vanishes due to beam bending under the action of the Lorentz force. For in-line configuration it was determined that the rms beam emittance reaches two minima for relatively high values of the external magnetic field.


Asunto(s)
Imagen por Resonancia Magnética/instrumentación , Aceleradores de Partículas/instrumentación , Diseño Asistido por Computadora , Campos Electromagnéticos , Diseño de Equipo , Análisis de Falla de Equipo , Reproducibilidad de los Resultados , Sensibilidad y Especificidad
15.
Med Phys ; 38(5): 2398-411, 2011 May.
Artículo en Inglés | MEDLINE | ID: mdl-21776774

RESUMEN

PURPOSE: Detector lag, or residual signal, in amorphous silicon (a-Si) flat-panel (FP) detectors can cause significant shading artifacts in cone-beam computed tomography (CBCT) reconstructions. To date, most correction models have assumed a linear, time-invariant (LTI) model and lag is corrected by deconvolution with an impulse response function (IRF). However, there are many ways to determine the IRF. The purpose of this work is to better understand detector lag in the Varian 4030CB FP and to identify the IRF measurement technique that best removes the CBCT shading artifact. METHODS: We investigated the linearity of lag in a Varian 4030CB a-Si FP operating in dynamic gain mode at 15 frames per second by examining the rising step-response function (RSRF) followed by the falling step-response function (FSRF) at ten incident exposures (0.5%-84% of a-Si FP saturation exposure). We implemented a multiexponential (N = 4) LTI model for lag correction and investigated the effects of various techniques for determining the IRF such as RSRF versus FSRF, exposure intensity, length of exposure, and spatial position. The resulting IRFs were applied to (1) the step-response projection data and (2) CBCT acquisitions of a large pelvic phantom and acrylic head phantom. For projection data, 1st and 50th frame lags were measured pre- and postcorrection. For the CBCT reconstructions, four pairs of ROIs were defined and the maximum and mean errors within each pair were calculated for the different exposures and step-response edge techniques. RESULTS: A nonlinearity greater than 50% was observed in the FSRF data. A model calibrated with RSRF data resulted in overcorrection of FSRF data. Conversely, models calibrated with FSRF data applied to RSRF data resulted in undercorrection of the RSRF. Similar effects were seen when LTI models were applied to data collected at different incident exposures. Some spatial variation in lag was observed in the step-response data. For CBCT reconstructions, an average error range of 3-21 HU was observed when using IRFs from different techniques. For our phantoms and FP, the lowest average error occurred for the FSRF-based techniques at exposures of 1.6 or 3.4% a-Si FP saturation, depending on the phantom used. CONCLUSIONS: The choice of step-response edge (RSRF versus FSRF) and exposure intensity for IRF calibration could leave large residual lag in the step-response data. For the CBCT reconstructions, IRFs derived from FSRF data at low exposure intensities (1.6 and 3.4%) best removed the CBCT shading artifact. Which IRF to use for lag correction could be selected based on the object size.


Asunto(s)
Algoritmos , Artefactos , Intensificación de Imagen Radiográfica/métodos , Interpretación de Imagen Radiográfica Asistida por Computador/métodos , Tomografía Computarizada por Rayos X/métodos , Simulación por Computador , Humanos , Modelos Lineales , Radar , Reproducibilidad de los Resultados , Sensibilidad y Especificidad
16.
Med Phys ; 38(11): 5896-909, 2011 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-22047354

RESUMEN

PURPOSE: The combination of quickly rotating C-arm gantry with digital flat panel has enabled the acquisition of three-dimensional data (3D) in the interventional suite. However, image quality is still somewhat limited since the hardware has not been optimized for CT imaging. Adaptive anisotropic filtering has the ability to improve image quality by reducing the noise level and therewith the radiation dose without introducing noticeable blurring. By applying the filtering prior to 3D reconstruction, noise-induced streak artifacts are reduced as compared to processing in the image domain. METHODS: 3D anisotropic adaptive filtering was used to process an ensemble of 2D x-ray views acquired along a circular trajectory around an object. After arranging the input data into a 3D space (2D projections + angle), the orientation of structures was estimated using a set of differently oriented filters. The resulting tensor representation of local orientation was utilized to control the anisotropic filtering. Low-pass filtering is applied only along structures to maintain high spatial frequency components perpendicular to these. The evaluation of the proposed algorithm includes numerical simulations, phantom experiments, and in-vivo data which were acquired using an AXIOM Artis dTA C-arm system (Siemens AG, Healthcare Sector, Forchheim, Germany). Spatial resolution and noise levels were compared with and without adaptive filtering. A human observer study was carried out to evaluate low-contrast detectability. RESULTS: The adaptive anisotropic filtering algorithm was found to significantly improve low-contrast detectability by reducing the noise level by half (reduction of the standard deviation in certain areas from 74 to 30 HU). Virtually no degradation of high contrast spatial resolution was observed in the modulation transfer function (MTF) analysis. Although the algorithm is computationally intensive, hardware acceleration using Nvidia's CUDA Interface provided an 8.9-fold speed-up of the processing (from 1336 to 150 s). CONCLUSIONS: Adaptive anisotropic filtering has the potential to substantially improve image quality and/or reduce the radiation dose required for obtaining 3D image data using cone beam CT.


Asunto(s)
Tomografía Computarizada de Haz Cónico/métodos , Imagenología Tridimensional/métodos , Intensificación de Imagen Radiográfica/métodos , Animales , Anisotropía , Corazón/diagnóstico por imagen , Fantasmas de Imagen
17.
J Vasc Interv Radiol ; 22(2): 236-43, 2011 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-21276916

RESUMEN

PURPOSE: Femoral artery stents are prone to fracture, and studying their deformations could lead to a better understanding of the cause of breakage. The present study sought to develop a method of imaging and analyzing stent deformation in vitro with use of a calibrated test device. MATERIALS AND METHODS: High-resolution (approximately 200 µm) volumetric data were obtained with a flat-panel detector-based C-arm computed tomography system. A nitinol stent placed in a testing device was imaged with various loads that caused bending, axial tension, and torsion. Semiautomatic software was developed to calculate the bending, extension, and torsion from the stent images by measuring the changes in the radius of curvature, eccentricity, and angular distortions. RESULTS: For the axial tension case, there was generally good agreement between the physical measurements and the image-based measurements. The bending measurements had better agreement at bend angles lower than 30°. For stent torsion, the hysteresis between the loading and unloading curves were larger for the image-based results compared with physical measurements. CONCLUSIONS: An imaging and analysis framework has been set up for the analysis of stent deformations that shows fairly good agreement between physical and image-based measurements.


Asunto(s)
Aleaciones , Angiografía/métodos , Prótesis Vascular , Arteria Femoral/diagnóstico por imagen , Arteria Femoral/cirugía , Stents , Tomografía Computarizada por Rayos X/métodos , Módulo de Elasticidad , Análisis de Falla de Equipo/métodos , Humanos , Diseño de Prótesis
18.
J Vasc Interv Radiol ; 22(2): 244-9, 2011 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-21276917

RESUMEN

PURPOSE: The authors have developed a direct method to study femoral artery stent deformations in vivo. A previously described imaging and analysis approach based on a calibrated phantom was used to examine stents in human volunteers treated for atherosclerotic disease. In this pilot study, forces on stents were evaluated under different in-vivo flexion conditions. MATERIALS AND METHODS: The optimized imaging protocol for imaging with a C-arm computed tomography system was first verified in an in-vivo porcine stent model. Human data were obtained by imaging 13 consenting volunteers with stents in femoral vessels. The affected leg was imaged in straight and bent positions to observe stent deformations. Semiautomatic software was used to calculate the changes in bending, extension, and torsion on the stents for the two positions. RESULTS: For the human studies, tension and bending calculation were successful. Bending was found to compress stent lengths by 4% ± 3% (-14.2 to 1.5 mm), increase their average eccentricity by 10% ± 9% (0.12 to -0.16), and change their mean curvature by 27% ± 22% (0 to -0.005 mm(-1)). Stents with the greatest change in eccentricity and curvature were located behind the knee or in the pelvis. Torsion calculations were difficult because the stents were untethered and are symmetric. In addition, multiple locations in each stent underwent torsional deformations. CONCLUSIONS: The imaging and analysis approach developed based on calibrated in vitro measurements was extended to in-vivo data. Bending and tension forces were successfully evaluated in this pilot study.


Asunto(s)
Aleaciones , Angiografía/métodos , Prótesis Vascular , Arteria Femoral/diagnóstico por imagen , Arteria Femoral/cirugía , Stents , Tomografía Computarizada por Rayos X/métodos , Anciano , Animales , Módulo de Elasticidad , Análisis de Falla de Equipo/métodos , Femenino , Humanos , Masculino , Diseño de Prótesis , Porcinos
19.
J Vasc Interv Radiol ; 22(11): 1535-43, 2011 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-21875814

RESUMEN

PURPOSE: To prospectively evaluate the impact of C-arm CT on radiation exposure to hepatocellular carcinoma (HCC) patients treated by chemoembolization. MATERIALS AND METHODS: Patients with HCC (N = 87) underwent digital subtraction angiography (DSA; control group) or combined C-arm CT/DSA (test group) for chemoembolization. Dose-area product (DAP) and cumulative dose (CD) were measured for guidance and treatment verification. Contrast agent volume and C-arm CT utility were also measured. RESULTS: The marginal DAP increase in the test group was offset by a substantial (50%) decrease in CD from DSA. Use of C-arm CT allowed reduction of DAP and CD from DSA imaging (P = .007 and P = .017). Experienced operators were more efficient in substituting C-arm CT for DSA, resulting in a negligible increase (7.5%) in total DAP for guidance, compared with an increase of 34% for all operators (P = .03). For treatment verification, DAP from C-arm CT exceeded that from DSA, approaching that of conventional CT. The test group used less contrast medium (P = .001), and C-arm CT provided critical or supplemental information in 20% and 17% of patients, respectively. CONCLUSIONS: Routine use of C-arm CT can increase stochastic risk (DAP) but decrease deterministic risk (CD) from DSA. However, the increase in DAP is operator-dependent, thus, with experience, it can be reduced to under 10%. C-arm CT provides information not provided by DSA in 33% of patients, while decreasing the use of iodinated contrast medium. As with all radiation-emitting modalities, C-arm CT should be used judiciously.


Asunto(s)
Carcinoma Hepatocelular/diagnóstico por imagen , Carcinoma Hepatocelular/tratamiento farmacológico , Quimioembolización Terapéutica , Arteria Hepática/diagnóstico por imagen , Neoplasias Hepáticas/diagnóstico por imagen , Neoplasias Hepáticas/tratamiento farmacológico , Dosis de Radiación , Radiografía Intervencional/métodos , Tomografía Computarizada por Rayos X , Adulto , Anciano , Anciano de 80 o más Años , Angiografía de Substracción Digital , California , Carcinoma Hepatocelular/irrigación sanguínea , Medios de Contraste , Femenino , Humanos , Neoplasias Hepáticas/irrigación sanguínea , Masculino , Persona de Mediana Edad , Seguridad del Paciente , Valor Predictivo de las Pruebas , Estudios Prospectivos , Traumatismos por Radiación/etiología , Traumatismos por Radiación/prevención & control , Radiografía Intervencional/efectos adversos , Análisis de Regresión , Medición de Riesgo , Factores de Riesgo , Tomografía Computarizada por Rayos X/efectos adversos
20.
J Med Imaging (Bellingham) ; 8(5): 052101, 2021 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-34738026

RESUMEN

Guest editors Patrick La Riviere, Rebecca Fahrig, and Norbert Pelc introduce the JMI Special Section Celebrating X-Ray Computed Tomography at 50.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA