Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 23
Filtrar
1.
Mol Cell ; 83(10): 1743-1760.e11, 2023 05 18.
Artículo en Inglés | MEDLINE | ID: mdl-37116497

RESUMEN

PARP1, an established anti-cancer target that regulates many cellular pathways, including DNA repair signaling, has been intensely studied for decades as a poly(ADP-ribosyl)transferase. Although recent studies have revealed the prevalence of mono-ADP-ribosylation upon DNA damage, it was unknown whether this signal plays an active role in the cell or is just a byproduct of poly-ADP-ribosylation. By engineering SpyTag-based modular antibodies for sensitive and flexible detection of mono-ADP-ribosylation, including fluorescence-based sensors for live-cell imaging, we demonstrate that serine mono-ADP-ribosylation constitutes a second wave of PARP1 signaling shaped by the cellular HPF1/PARP1 ratio. Multilevel chromatin proteomics reveals histone mono-ADP-ribosylation readers, including RNF114, a ubiquitin ligase recruited to DNA lesions through a zinc-finger domain, modulating the DNA damage response and telomere maintenance. Our work provides a technological framework for illuminating ADP-ribosylation in a wide range of applications and biological contexts and establishes mono-ADP-ribosylation by HPF1/PARP1 as an important information carrier for cell signaling.


Asunto(s)
ADP-Ribosilación , Histonas , Histonas/genética , Histonas/metabolismo , Poli(ADP-Ribosa) Polimerasa-1/genética , Poli(ADP-Ribosa) Polimerasa-1/metabolismo , Cromatina , Daño del ADN , Anticuerpos/genética , Transducción de Señal
2.
Nucleic Acids Res ; 52(12): 6994-7011, 2024 Jul 08.
Artículo en Inglés | MEDLINE | ID: mdl-38828775

RESUMEN

The clinical success of PARP1/2 inhibitors (PARPi) prompts the expansion of their applicability beyond homologous recombination deficiency. Here, we demonstrate that the loss of the accessory subunits of DNA polymerase epsilon, POLE3 and POLE4, sensitizes cells to PARPi. We show that the sensitivity of POLE4 knockouts is not due to compromised response to DNA damage or homologous recombination deficiency. Instead, POLE4 loss affects replication speed leading to the accumulation of single-stranded DNA gaps behind replication forks upon PARPi treatment, due to impaired post-replicative repair. POLE4 knockouts elicit elevated replication stress signaling involving ATR and DNA-PK. We find POLE4 to act parallel to BRCA1 in inducing sensitivity to PARPi and counteracts acquired resistance associated with restoration of homologous recombination. Altogether, our findings establish POLE4 as a promising target to improve PARPi driven therapies and hamper acquired PARPi resistance.


Asunto(s)
Proteína BRCA1 , ADN Polimerasa II , Replicación del ADN , Inhibidores de Poli(ADP-Ribosa) Polimerasas , Inhibidores de Poli(ADP-Ribosa) Polimerasas/farmacología , Humanos , Proteína BRCA1/genética , Proteína BRCA1/metabolismo , ADN Polimerasa II/metabolismo , ADN Polimerasa II/genética , Replicación del ADN/efectos de los fármacos , Daño del ADN , Línea Celular Tumoral , Recombinación Homóloga/genética , Recombinación Homóloga/efectos de los fármacos , Resistencia a Antineoplásicos/genética
3.
Proc Natl Acad Sci U S A ; 116(33): 16479-16488, 2019 08 13.
Artículo en Inglés | MEDLINE | ID: mdl-31346090

RESUMEN

Regulation of IFN signaling is critical in host recognition and response to pathogens while its dysregulation underlies the pathogenesis of several chronic diseases. STimulator of IFN Genes (STING) has been identified as a critical mediator of IFN inducing innate immune pathways, but little is known about direct coregulators of this protein. We report here that TMEM203, a conserved putative transmembrane protein, is an intracellular regulator of STING-mediated signaling. We show that TMEM203 interacts, functionally cooperates, and comigrates with STING following cell stimulation, which in turn leads to the activation of the kinase TBK1, and the IRF3 transcription factor. This induces target genes in macrophages, including IFN-ß. Using Tmem203 knockout bone marrow-derived macrophages and transient knockdown of TMEM203 in human monocyte-derived macrophages, we show that TMEM203 protein is required for cGAMP-induced STING activation. Unlike STING, TMEM203 mRNA levels are elevated in T cells from patients with systemic lupus erythematosus, a disease characterized by the overexpression of type I interferons. Moreover, TMEM203 mRNA levels are associated with disease activity, as assessed by serum levels of the complement protein C3. Identification of TMEM203 sheds light into the control of STING-mediated innate immune responses, providing a potential novel mechanism for therapeutic interventions in STING-associated inflammatory diseases.


Asunto(s)
Inflamación/metabolismo , Macrófagos/metabolismo , Macrófagos/patología , Proteínas de la Membrana/metabolismo , Transducción de Señal , Secuencia Conservada , Regulación hacia Abajo , Evolución Molecular , Células HeLa/metabolismo , Humanos , Inflamación/patología , Factor 3 Regulador del Interferón/metabolismo , Interferón Tipo I/metabolismo , Lupus Eritematoso Sistémico/metabolismo , Lupus Eritematoso Sistémico/patología , Lisosomas/metabolismo , Proteínas de la Membrana/química , Proteínas de la Membrana/genética , Nucleótidos Cíclicos/metabolismo , Unión Proteica , Dominios Proteicos , Proteínas Serina-Treonina Quinasas/metabolismo , ARN Mensajero/genética , ARN Mensajero/metabolismo , Molécula de Interacción Estromal 1/metabolismo
4.
BMC Cancer ; 18(1): 872, 2018 Sep 05.
Artículo en Inglés | MEDLINE | ID: mdl-30185144

RESUMEN

BACKGROUND: Adipose-tissue stem cells (ASCs) are subject of intensive research since their successful use in regenerative therapy. The drawback of ASCs is that they may serve as stroma for cancer cells and assist tumor progression. It is disquieting that ASCs frequently undergo genetic and epigenetic changes during their in vitro propagation. In this study, we describe the polyploidization of murine ASCs and the accompanying phenotypical, gene expressional and functional changes under long term culturing. METHODS: ASCs were isolated from visceral fat of C57BL/6 J mice, and cultured in vitro for prolonged time. The phenotypical changes were followed by microscopy and flow cytometry. Gene expressional changes were determined by differential transcriptome analysis and changes in protein expression were shown by Western blotting. The tumor growth promoting effect of ASCs was examined by co-culturing them with 4 T1 murine breast cancer cells. RESULTS: After five passages, the proliferation of ASCs decreases and cells enter a senescence-like state, from which a proportion of cells escape by polyploidization. The resulting ASC line is susceptible to adipogenic, osteogenic and chondrogenic differentiation, and expresses the stem cell markers CD29 and Sca-1 on an upregulated level. Differential transcriptome analysis of ASCs with normal and polyploid karyotype shows altered expression of genes that are involved in regulation of cancer, cellular growth and proliferation. We verified the increased expression of Klf4 and loss of Nestin on protein level. We found that elevated production of insulin-like growth factor 1 by polyploid ASCs rendered them more potent in tumor growth promotion in vitro. CONCLUSIONS: Our model indicates how ASCs with altered genetic background may support tumor progression.


Asunto(s)
Tejido Adiposo/citología , Neoplasias de la Mama/genética , Neoplasias de la Mama/metabolismo , Factor I del Crecimiento Similar a la Insulina/biosíntesis , Poliploidía , Células Madre/citología , Células Madre/metabolismo , Animales , Antígenos de Superficie/metabolismo , Neoplasias de la Mama/patología , Línea Celular Tumoral , Proliferación Celular , Femenino , Citometría de Flujo , Perfilación de la Expresión Génica , Humanos , Cariotipo , Factor 4 Similar a Kruppel , Ratones , Transcriptoma
5.
Int J Mol Sci ; 18(10)2017 Oct 07.
Artículo en Inglés | MEDLINE | ID: mdl-28991167

RESUMEN

Achiral Mannich-type curcumin analogs have been synthetized and assayed for their cytotoxic activity. The anti-proliferative and cytotoxic activity of curcuminoids has been tested on human non-small-cell lung carcinoma (A549), hepatocellular carcinoma (HepG2) and pancreatic cancer cell line (PANC-1). Based on the highest anti-proliferative activity nine drug candidates were further tested and proved to cause phosphatidylserine exposure as an early sign of apoptosis. Curcumin analogs with the highest apoptotic activity were selected for mechanistic studies in the most sensitive PANC-1 cells. Cytotoxic activity was accompanied by cytostatic effect since curcumin and analogs treatment led to G0/G1 cell cycle arrest. Moreover, cytotoxic effect could be also detected via the accumulation of curcuminoids in the endoplasmic reticulum (ER) and the up-regulation of ER stress-related unfolded protein response (UPR) genes: HSPA5, ATF4, XBP1, and DDIT3. The activated UPR induced mitochondrial membrane depolarization, caspase-3 activation and subsequent DNA breakdown in PANC-1 cells. Achiral curcumin analogs, C509, C521 and C524 possessed superior, 40-times more potent cytotoxic activity compared to natural dihydroxy-dimetoxycurcumin in PANC-1 cells.


Asunto(s)
Membranas Mitocondriales/metabolismo , Factor de Transcripción Activador 4/genética , Factor de Transcripción Activador 4/metabolismo , Puntos de Control del Ciclo Celular/efectos de los fármacos , Línea Celular Tumoral , Curcumina/análogos & derivados , Curcumina/farmacología , Chaperón BiP del Retículo Endoplásmico , Proteínas de Choque Térmico/genética , Proteínas de Choque Térmico/metabolismo , Células Hep G2 , Humanos , Membranas Mitocondriales/efectos de los fármacos , Factor de Transcripción CHOP/genética , Factor de Transcripción CHOP/metabolismo , Respuesta de Proteína Desplegada/efectos de los fármacos , Proteína 1 de Unión a la X-Box/genética , Proteína 1 de Unión a la X-Box/metabolismo
6.
J Biomol NMR ; 66(4): 227-232, 2016 12.
Artículo en Inglés | MEDLINE | ID: mdl-27885546

RESUMEN

Fragment-based drug design has been successfully applied to challenging targets where the detection of the weak protein-ligand interactions is a key element. 1H saturation transfer difference (STD) NMR spectroscopy is a powerful technique for this work but it requires pure homogeneous proteins as targets. Monoclonal antibody (mAb)-relayed 15N-GS STD spectroscopy has been developed to resolve the problem of protein mixtures and impure proteins. A 15N-labelled target-specific mAb is selectively irradiated and the saturation is relayed through the target to the ligand. Tests on the anti-Gal-1 mAb/Gal-1/lactose system showed that the approach is experimentally feasible in a reasonable time frame. This method allows detection and identification of binding molecules directly from a protein mixture in a multicomponent system.


Asunto(s)
Anticuerpos Monoclonales/química , Ligandos , Espectroscopía de Resonancia Magnética , Isótopos de Nitrógeno/química , Proteínas/química , Diseño de Fármacos , Espectroscopía de Resonancia Magnética/métodos , Modelos Moleculares , Conformación Molecular , Unión Proteica
7.
Cytotherapy ; 18(3): 360-70, 2016 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-26857229

RESUMEN

BACKGROUND AIMS: Mesenchymal stromal cells (MSCs) have powerful immunosuppressive activity. This function of MSCs is attributed to plethora of the expressed immunosuppressive factors, such as galectin-1 (Gal-1), a pleiotropic lectin with robust anti-inflammatory effect. Nevertheless, whether Gal-1 renders or contributes to the immunosuppressive effect of MSCs has not been clearly established. Therefore, this question was the focus of a complex study. METHODS: MSCs were isolated from bone marrows of wild-type and Gal-1 knockout mice and their in vitro anti-proliferative and apoptosis-inducing effects on activated T cells were examined. The in vivo immunosuppressive activity was tested in murine models of type I diabetes and delayed-type hypersensitivity. RESULTS: Both Gal-1-expressing and -deficient MSCs inhibited T-cell proliferation. Inhibition of T-cell proliferation by MSCs was mediated by nitric oxide but not PD-L1 or Gal-1. In contrast, MSC-derived Gal-1 triggered apoptosis in activated T cells that were directly coupled to MSCs, representing a low proportion of the T-cell population. Furthermore, absence of Gal-1 in MSCs did not affect their in vivo immunosuppressive effect. CONCLUSIONS: These results serve as evidence that Gal-1 does not play a role in the systemic immunosuppressive effect of MSCs. However, a local contribution of Gal-1 to modulation of T-cell response by direct cell-to-cell interaction cannot be excluded. Notably, this study serves a good model to understand how the specificity of a pleiotropic protein depends on the type and localization of the producing effector cell and its target.


Asunto(s)
Comunicación Celular/genética , Galectina 1/fisiología , Factores Inmunológicos/fisiología , Células Madre Mesenquimatosas/metabolismo , Animales , Apoptosis/genética , Médula Ósea/metabolismo , Proliferación Celular/genética , Células Cultivadas , Galectina 1/genética , Factores Inmunológicos/genética , Inmunosupresores/metabolismo , Activación de Linfocitos/genética , Masculino , Células Madre Mesenquimatosas/fisiología , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Linfocitos T/inmunología
8.
Acta Biol Hung ; 62(1): 106-11, 2011 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-21388924

RESUMEN

Galectin-1 (Gal-1), a mammalian lectin induces apoptosis of T lymphocytes. Contradictory data have resulted in confusing knowledge regarding mechanism of Gal-1 induced T-cell apoptosis. In this paper we aimed to resolve this controversy by comparing cell death induced by low (1.8 µM, lowGal-1) and high (18 µM, highGal-1) concentration of soluble Gal-1. We show that lowGal-1 and highGal-1 trigger phosphatidylserine exposure, generation of rafts and mitochondrial membrane depolarization. In contrast, lowGal-1 but not highGal-1 is dependent on the presence of p56lck and ZAP70 and activates caspase cascade. The results allow the conclusion that the cell-death mechanism strictly depends on the concentration of Gal-1.


Asunto(s)
Apoptosis/efectos de los fármacos , Galectina 1/farmacología , Linfocitos T/efectos de los fármacos , Apoptosis/fisiología , Caspasas/metabolismo , Relación Dosis-Respuesta a Droga , Humanos , Células Jurkat , Membranas Mitocondriales/efectos de los fármacos , Membranas Mitocondriales/fisiología , Transducción de Señal/efectos de los fármacos , Transducción de Señal/fisiología , Linfocitos T/citología
9.
Chembiochem ; 11(2): 228-34, 2010 Jan 25.
Artículo en Inglés | MEDLINE | ID: mdl-19938027

RESUMEN

Galectin-1 (Gal-1), a ubiquitous beta-galactoside-binding protein expressed by various normal and pathological tissues, has been implicated in cancer and autoimmune/inflammatory diseases in consequence of its regulatory role in adhesion, cell viability, proliferation, and angiogenesis. The functions of Gal-1 depend on its affinity for beta-galactoside-containing glycoconjugates; accordingly, the inhibition of sugar binding blocks its functions, hence promising potential therapeutic tools. The Tyr-Xxx-Tyr peptide motifs have been reported to be glycomimetic sequences, mainly on the basis of their inhibitory effect on the Gal-1-asialofetuin (ASF) interaction. However, the results regarding the efficacy of the Tyr-Xxx-Tyr motif as a glycomimetic inhibitor are still controversial. The present STD and trNOE NMR experiments reveal that the Tyr-Xxx-Tyr peptides studied do not bind to Gal-1, whereas their binding to ASF is clearly detected. (15)N,(1)H HSQC titrations with (15)N-labeled Gal-1 confirm the absence of any peptide-Gal-1 interaction. These data indicate that the Tyr-Xxx-Tyr peptides tested in this work are not glycomimetics as they interact with ASF via an unrevealed molecular linkage.


Asunto(s)
Asialoglicoproteínas/metabolismo , Galectina 1/metabolismo , Glicoproteínas/metabolismo , Péptidos/farmacología , Tirosina/química , alfa-Fetoproteínas/metabolismo , Secuencias de Aminoácidos , Secuencia de Aminoácidos , Asialoglicoproteínas/antagonistas & inhibidores , Fetuínas , Galectina 1/antagonistas & inhibidores , Galectina 1/genética , Humanos , Células Jurkat , Espectroscopía de Resonancia Magnética , Péptidos/síntesis química , Péptidos/química , Unión Proteica , Proteínas Recombinantes/antagonistas & inhibidores , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , alfa-Fetoproteínas/antagonistas & inhibidores
10.
Front Oncol ; 10: 157, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32133294

RESUMEN

Background: The close proximity of adipose tissue and mammary epithelium predispose involvement of adipose cells in breast cancer development. Adipose-tissue stem cells (ASCs) contribute to tumor stroma and promote growth of cancer cells. In our previous study, we have shown that murine ASCs, which undergo polyploidization during their prolonged in vitro culturing, enhanced the proliferation of 4T1 murine breast cancer cells in IGF1 dependent manner. Aims: In the present study, our aim was to clarify the regulation of ASC-derived IGF1. Methods: 4T1 murine breast carcinoma cells were co-transplanted with visceral fat-derived ASCs (vASC) or with the polyploid ASC.B6 cell line into female BALB/c mice and tumor growth and lung metastasis were monitored. The conditioned media of vASCs and ASC.B6 cells were subjected to LC-MS/MS analysis and the production of IGFBP2 was verified by Western blotting. The regulatory effect was examined by adding recombinant IGFBP2 to the co-culture of ASC.B6 and 4T1. Akt/protein kinase B (PKB) activation was detected by Western blotting. Results: Polyploid ASCs promoted the tumor growth and metastasis more potently than vASCs with normal karyotype. vASCs produced the IGF1 regulator IGFBP2, which inhibited proliferation of 4T1 cells. Downregulation of IGFBP2 by polyploidization of ASCs and enhanced secretion of IGF1 allowed survival signaling in 4T1 cells, leading to Akt phosphorylation. Conclusions: Our results implicate that ASCs in the tumor microenvironment actively regulate the growth of breast cancer cells through the IGF/IGFBP system.

11.
Exp Hematol ; 35(2): 305-13, 2007 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-17258079

RESUMEN

OBJECTIVE: The immunosuppressive and anti-inflammatory activity of mammalian galectin-1 (Gal-1) has been well established in experimental in vivo animal models and in vitro studies. Since the proliferation and migration of leukocytes represent a necessary and important step in response to the inflammatory insult, we have investigated whether Gal-1 affects the mobilization of hematopoietic progenitor cells (HPC) induced by cyclophosphamide (CY) and granulocyte colony-stimulating factor (G-CSF). METHODS: Bone marrow HPCs were mobilized with CY/G-CSF or CY/G-CSF plus human recombinant Gal-1 in BDF1 mice. Bone marrow (BM) and blood cells were taken at different time points and analyzed for their in vivo repopulating ability in lethally irradiated syngeneic animals. The number of myeloid progenitor cells in BM and blood samples was determined by colony-forming cell assay. Expression of surface markers (Sca-1, CD3epsilon, CD45R/B220, Ter-119, GR-1, and CD11b) on nucleated marrow cells was measured by flow cytometry. The lymphocytes, granulocytes, and monocytes in blood samples were counted after Giemsa staining. RESULTS: Gal-1 dramatically inhibited CY/G-CSF-induced HPC migration to the periphery as well as decreased peripheral neutrophilia and monocytosis in a dose- and time-dependent manner. In contrast, Gal-1 itself stimulated HPC expansion and accumulation within the BM. The presence of the lectin for inhibition of HPC mobilization was essential during the second half of the treatment. Moreover, Gal-1 inhbited transendothelial migration of BM-derived HPCs in response to SDF-1 in vitro. CONCLUSION: Gal-1 blocked BM progenitor cell migration induced by CY/G-CSF treatment, indicating a novel anti-inflammatory function of the lectin. We suggest that the inhibition of HPC mobilization occurs mainly via obstructing the transendothelial migration of BM-derived cells including primitive hematopoietic and committed myeloid progenitor cells and mature granulocytes and monocytes.


Asunto(s)
Antiinflamatorios no Esteroideos/farmacología , Galectina 1/farmacología , Movilización de Célula Madre Hematopoyética/métodos , Células Madre Hematopoyéticas/efectos de los fármacos , Animales , Biomarcadores , Células Sanguíneas/efectos de los fármacos , Células Sanguíneas/inmunología , Células de la Médula Ósea/efectos de los fármacos , Células de la Médula Ósea/inmunología , Movimiento Celular/efectos de los fármacos , Células Cultivadas , Quimiocina CXCL12/antagonistas & inhibidores , Ensayo de Unidades Formadoras de Colonias/métodos , Ciclofosfamida/farmacología , Relación Dosis-Respuesta a Droga , Femenino , Citometría de Flujo , Factor Estimulante de Colonias de Granulocitos/administración & dosificación , Células Madre Hematopoyéticas/inmunología , Inyecciones Intraperitoneales , Inyecciones Subcutáneas , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Endogámicos DBA , Proteínas Recombinantes/farmacología , Factores de Tiempo
12.
Cell Signal ; 18(11): 1887-96, 2006 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-16549336

RESUMEN

The mechanism of apoptosis induced by human galectin-1, a mammalian beta-galactoside-binding protein with a remarkable cytotoxic effect on activated peripheral T cells and tumor T cell lines has been extensively investigated in this study. Here we first show that galectin-1 initiate the acid sphingomyelinase mediated release of ceramide and this event is critical in the further steps. Elevation of ceramide level coincides with exposure of phosphatidylserine on the outer cell membrane. The downstream events, decrease of Bcl-2 protein amount, depolarization of the mitochondria and activation of the caspase 9 and caspase 3 depend on production of ceramide. All downstream steps, including production of ceramide, require the generation of membrane rafts and the presence of two tyrosine kinases, p56(lck) and ZAP70. Based on our findings we suggest a model of the mechanism of galectin-1 triggered cell death.


Asunto(s)
Apoptosis , Ceramidas/biosíntesis , Galectina 1/metabolismo , Mitocondrias/metabolismo , Transducción de Señal , Esfingomielina Fosfodiesterasa/fisiología , Línea Celular , Humanos , Células Jurkat , Proteína Tirosina Quinasa p56(lck) Específica de Linfocito/metabolismo , Mitocondrias/enzimología , Fosforilación , Tirosina/metabolismo , Proteína Tirosina Quinasa ZAP-70/metabolismo
13.
Immunobiology ; 220(4): 483-9, 2015 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-25468561

RESUMEN

Secreted, extracellular galectin-1 (exGal-1) but not intracellular Gal-1 (inGal-1) has been described as a strong immunosuppressive protein due to its major activity of inducing apoptosis of activated T-cells. It has previously been reported that T-cells express Gal-1 upon activation, however its participation in T-cell functions has remained largely elusive. To determine function of Gal-1 expressed by activated T-cells we have carried out a series of experiments. We have shown that Gal-1, expressed in Gal-1-transgenic Jurkat cells or in activated T-cells, remained intracellularly indicating that Gal-1-induced T-cell death was not a result of an autocrine effect of the de novo expressed Gal-1. Rather, a particular consequence of the inGal-1 expression was that T-cells became more sensitive to exGal-1 added either as a soluble protein or bound to the surface of a Gal-1-secreting effector cell. This was also verified when the susceptibility of activated T-cells from wild type or Gal-1 knockout mice to Gal-1-induced apoptosis were compared. Murine T-cells expressing Gal-1 were more sensitive to the cytotoxicity of the exGal-1 than their Gal-1 knockout counterparts. We also conducted a study with activated T-cells from patients with systemic lupus erythematosus (SLE), a disease in which dysregulated T-cell apoptosis has been well described. SLE T-cells expressed lower amounts of Gal-1 than healthy T-cells and were less sensitive to exGal-1. These results suggested a novel role of inGal-1 in T-cells as a regulator of T-cell response to exGal-1, and its likely contribution to the mechanism in T-cell apoptosis deficiency in lupus.


Asunto(s)
Galectina 1/metabolismo , Linfocitos T/metabolismo , Animales , Apoptosis/efectos de los fármacos , Apoptosis/genética , Estudios de Casos y Controles , Línea Celular , Galectina 1/genética , Galectina 1/farmacología , Expresión Génica , Humanos , Espacio Intracelular/metabolismo , Células Jurkat , Lupus Eritematoso Sistémico/genética , Lupus Eritematoso Sistémico/inmunología , Lupus Eritematoso Sistémico/metabolismo , Activación de Linfocitos/inmunología , Ratones , Ratones Noqueados , Linfocitos T/efectos de los fármacos
14.
Stem Cells Dev ; 24(18): 2171-80, 2015 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-26153898

RESUMEN

When mesenchymal stem cells (MSCs) are used for therapy of immunological pathologies, they get into an inflammatory environment, altering the effectiveness of the treatment. To establish the impact of environmental inflammatory factors on MSCs' immunofunction in the mirror of intrinsic heterogeneity of mouse MSC population, individual MSC clones were generated and characterized. Adipogenic but not osteogenic differentiation and pro-angiogenic activity of five independent MSC cell lines were similar. Regarding osteogenic differentiation, clones MSC3 and MSC6 exhibited poorer capacity than MSC2, MSC4, and MSC5. To study the immunosuppressive heterogeneity, in vitro and in vivo experiments have been carried out using T-cell proliferation assay and delayed-type hypersensitivity (DTH) response, respectively. A remarkable difference was found between the clones in their ability to inhibit T-cell proliferation in the following order: MSC2≥MSC5>MSC4>MSC3 >> MSC6. Nevertheless, the differences between the immunosuppressive activities of the individual clones disappeared on pretreatment of the cells with pro-inflammatory cytokines, a procedure called licensing. Stimulation of all clones with IFN-γ and TNF-α resulted in elevation of their inhibitory capability to a similar level. Nitric oxide (NO) and prostaglandin E2 (PGE2) were identified as major mediators of immunofunction of the MSC clones. The earlier findings were also supported by in vivo results. Without licensing, MSC2 inhibited DTH response, while MSC6 did not affect DTH response. In contrast, prestimulation of MSC6 with inflammatory cytokines resulted in strong suppression by this clone as well. Here, we have showed that MSC population is functionally heterogeneous in terms of immunosuppressive function; however, this variability is largely reduced under pro-inflammatory conditions.


Asunto(s)
Adipogénesis/fisiología , Citocinas/inmunología , Tolerancia Inmunológica/inmunología , Células Madre Mesenquimatosas/citología , Osteogénesis/fisiología , Animales , Diferenciación Celular , Proliferación Celular , Células Cultivadas , Dinoprostona/inmunología , Inflamación/inmunología , Interferón gamma/inmunología , Activación de Linfocitos/inmunología , Células Madre Mesenquimatosas/metabolismo , Ratones , Ratones Endogámicos C57BL , Óxido Nítrico/inmunología , Linfocitos T/inmunología , Factor de Necrosis Tumoral alfa/inmunología
15.
Mol Med Rep ; 12(3): 4610-1619, 2015 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-26126392

RESUMEN

Translational research in radiation oncology is important for the detection of adverse radiation effects, cellular responses, and radiation modifications, and may help to improve the outcome of radiation therapy in patients with cancer. The present study aimed to optimize and validate a real­time label­free assay for the dynamic monitoring of cellular responses to ionizing radiation. The xCELLigence system is an impedance­based platform that provides continuous information on alterations in cell size, shape, adhesion, proliferation, and survival. In the present study, various malignant human primary fibroblast cells (U251, GBM2, MCF7, A549, HT­29) were exposed to 0, 5 and 10 Gy of Cobalt60 radiation. As well as the xCELLigence system, cell survival and proliferation was evaluated using the following conventional end­point cell­based methods: Clonogenic, MTS, and lactate dehydrogenase assays, and apoptosis was detected by fluorescence­activated cell sorting. The effects of ionizing radiation were detected for each cell line using impedance monitoring. The real­time data correlated with the colony forming assay results. At low cell densities (1,000­2,000 cells/well) the impedance­based method was more accurate at monitoring dose­dependent changes in the malignant human primary fibroblast cell lines, as compared with the end­point assays. The results of the present study demonstrated that the xCELLigence system may be a reliable and rapid diagnostic method for the monitoring of dynamic cell behavior following radiation. In addition, the xCELLigence system may be used to investigate the cellular mechanisms underlying the radiation response, as well as the time­dependent effects of radiation on cell proliferation and viability.


Asunto(s)
Apoptosis/efectos de la radiación , Bioensayo/instrumentación , Fibroblastos/efectos de la radiación , Rayos gamma , Adhesión Celular/efectos de la radiación , Recuento de Células , Línea Celular Tumoral , Proliferación Celular/efectos de la radiación , Forma de la Célula/efectos de la radiación , Tamaño de la Célula/efectos de la radiación , Supervivencia Celular/efectos de la radiación , Relación Dosis-Respuesta en la Radiación , Impedancia Eléctrica , Fibroblastos/citología , Fibroblastos/enzimología , Humanos , L-Lactato Deshidrogenasa/metabolismo , Especificidad de Órganos , Cultivo Primario de Células , Factores de Tiempo
16.
Immunol Lett ; 82(1-2): 149-54, 2002 Jun 03.
Artículo en Inglés | MEDLINE | ID: mdl-12008046

RESUMEN

Galectin-1 (Gal-1) is an endogenous mammalian S-type lectin with highly pleiotropic effect on different tissues. The viability of the lymphoid cells is reduced by gal-1 by triggering apoptosis, however, the mechanism of the gal-1 induced apoptosis is still under investigation. The receptor tyrosine phosphatase, CD45, a heavily glycosylated cell surface molecule binds to gal-1 with high affinity, however, its contribution to the gal-1 induced apoptosis is still controversial. In this study we show that galectin-1 binds to cells deficient for CD45, although CD45 is one of the galectin-1-binding cell surface proteins on T cells. Moreover, the CD45 deficient Jurkat variant, J45.01 responds readily with tyrosine phosphorylation and subsequent apoptosis to galectin-1 treatment in a similar degree as its wild type counterpart, Jurkat does. These results strongly indicate that CD45 is not the receptor via gal-1 mediates the apoptotic signal into the cells as it was suggested in previous studies.


Asunto(s)
Apoptosis , Hemaglutininas/metabolismo , Antígenos Comunes de Leucocito/metabolismo , Linfocitos T/enzimología , Linfocitos T/inmunología , Endocitosis , Galectina 1 , Galectinas , Humanos , Células Jurkat , Antígenos Comunes de Leucocito/fisiología , Fosforilación , Fosfotirosina/metabolismo , Transducción de Señal , Linfocitos T/citología , Células Tumorales Cultivadas
17.
Immunol Lett ; 91(1): 17-21, 2004 Jan 30.
Artículo en Inglés | MEDLINE | ID: mdl-14757365

RESUMEN

Lysophospholipids, particularly lysophosphatidylcholine (lyso-PC), have been implicated in modulating T cell functions at the sites of inflammation and atherosclerosis. Although the chemotactic and immunomodulatory effects are well documented, the exact signaling pathway of lyso-PC action is poorly defined. In this work, we studied the earliest biochemical events in T cells triggered by lyso-PC. A marked and immediate tyrosine phosphorylation was induced in the leukemic T cell line, Jurkat. Phosphorylation of cellular substrates included src family kinase, p56(lck) and syk family kinase, ZAP70. The lyso-PC induced tyrosine phosphorylation was largely dependent on the presence of functional p56(lck). Tyrosine phosphorylation was followed by the elevation of intracellular Ca(2+) concentration. The magnitude of the mobilization of the intracellular Ca(2+) was similar in the absence of the p56(lck) activity in JCaM1.6 cells as in Jurkat cells, however, it was slightly but reproducibly delayed compared to that in the wild type cells. Inhibition of the Ser/Thr kinases and tyrosine kinases with staurosporine and genistein, respectively, decreased the rise in the intracellular Ca(2+) content. Moreover, pertussis toxin completely blocked the Ca(2+) signal supporting the role of the G-protein coupled LPC receptor in this event.


Asunto(s)
Calcio/metabolismo , Lisofosfatidilcolinas/metabolismo , Proteínas Tirosina Quinasas/metabolismo , Linfocitos T/enzimología , Humanos , Células Jurkat , Fosforilación , Proteínas Serina-Treonina Quinasas/metabolismo
18.
Int J Oncol ; 20(3): 563-70, 2002 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-11836569

RESUMEN

The fermented wheat germ extract (code name: MSC, trade name: Avemar), with standardized benzoquinone content has been shown to inhibit tumor propagation and metastases formation in vivo. The aim of this study was to understand the molecular and cellular mechanisms of the anti-tumor effect of MSC. Therefore, we have designed in vitro model experiments using T and B tumor lymphocytic cell lines. Tyrosine phosphorylation of intracellular proteins and elevation of the intracellular Ca2+ concentration were examined using immunoblotting with anti-phosphotyrosine antibody and cytofluorimetry by means of Ca2+ sensitive fluorescence dyes, Fluo-3AM and FuraRed-AM, respectively. Apoptosis was measured with cytofluorimetry by staining the DNA with propidium iodide and detecting the cell population. The level of the cell surface MHC class I molecules was analysed with indirect immunofluorescence on cytofluorimeter using a monoclonal antibody to the non-polymorphic region of the human MHC class I. MSC stimulated tyrosine phosphorylation of intracellular proteins and the influx of extracellular Ca2+ resulted in elevation of intracellular Ca2+ concentration. Prominent apoptosis of 20-40% was detected upon 24 h of MSC treatment of the cell lines. As a result of the MSC treatment, the amount of the cell surface MHC class I proteins was downregulated by 70-85% compared to the non-stimulated control. MSC did not induce a similar degree of apoptosis in healthy peripheral blood mononuclear cells. Inhibition of the cellular tyrosine phosphatase activity or Ca2+ influx resulted in the opposite effect increasing or diminishing the Avemar induced apoptosis as well as the MHC class I downregulation, respectively. A benzoquinone component (2,6-dimethoxi-p-benzoquinone) in MSC induced similar apoptosis and downregulation of the MHC class I molecules in the tumor T and B cell lines to that of MSC. These results suggest that MSC acts on lymphoid tumor cells by reducing MHC class I expression and selectively promoting apoptosis of tumor cells on a tyrosine phosphorylation and Ca2+ influx dependent way. One of the components in MSC, 2,6-dimethoxi-p-benzoquinone was shown to be an important factor in MSC mediated cell response.


Asunto(s)
Apoptosis , Linfocitos B/citología , Regulación hacia Abajo , Genes MHC Clase I/genética , Lectinas/farmacología , Extractos Vegetales/farmacología , Linfocitos T/citología , Triticum/química , Benzoquinonas/farmacología , Calcio/metabolismo , División Celular , Línea Celular , Relación Dosis-Respuesta a Droga , Técnica del Anticuerpo Fluorescente Indirecta , Humanos , Células Jurkat , Antígenos Comunes de Leucocito/biosíntesis , Leucocitos Mononucleares/metabolismo , Fenotipo , Fosforilación , Lectinas de Plantas , Factores de Tiempo , Células Tumorales Cultivadas
19.
Mol Immunol ; 57(2): 302-9, 2014 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-24231767

RESUMEN

One prominent immunoregulatory function of galectin-1 (Gal-1), a ß-galactoside binding mammalian lectin, is induction of apoptosis in activated T-cells by a process depending on the activity of Src family tyrosine kinase, Lck. Although the requirement for Lck in Gal-1 induced T-cell death and the ability of Gal-1 to affect the membrane localization of extracellular Gal-1-binding proteins have been well documented, the consequence of the complex and related reorganization of extra- and intracellular signaling components upon Gal-1 treatment of T-cells has not yet been revealed. Therefore, we have analyzed the plasma membrane movement of Lck upon Gal-1 triggered signaling, and the significance of this event in Gal-1 induced T-cell death. Non-receptor tyrosine kinase, Lck primarily localized in the synapse of tumor cell-T-cell during 15 min of the established direct cell contact. Later, after 30 min, a lateral segregation of Lck from the cell synapse was observed. The migration of Lck to the opposite of the cell contact apparently depended on the expression and cell surface presentation of Gal-1 on the effector (tumor) cells and was accompanied by phosphorylation on the negative regulatory tyrosine residue, Tyr505. Receptor tyrosine phosphatase, CD45 played crucial role in this event since CD45 deficiency or inhibition of its phosphatase activity resulted in the failure of Lck membrane movement. Level of the Gal-1-binding glycolipid GM1 ganglioside also essentially regulated Lck localization. Segregation of Lck and Gal-1 induced apoptosis was diminished in T-cells with low GM1 expression compared to T-cells with high GM1. Our results show that spatial regulation of Lck by CD45 and GM1 ganglioside determines the outcome of apoptotic response to Gal-1 and this local regulation may occur only upon intimate effector (Gal-1 expressing) cell-T-cell attachment.


Asunto(s)
Apoptosis/inmunología , Gangliósido G(M1)/metabolismo , Galectina 1/metabolismo , Antígenos Comunes de Leucocito/metabolismo , Proteína Tirosina Quinasa p56(lck) Específica de Linfocito/metabolismo , Linfocitos T/metabolismo , Línea Celular Tumoral , Células HeLa , Humanos , Células Jurkat , Antígenos Comunes de Leucocito/antagonistas & inhibidores , Antígenos Comunes de Leucocito/inmunología , Activación de Linfocitos/inmunología , Fosforilación , Transducción de Señal/inmunología
20.
Stem Cells Dev ; 21(5): 814-28, 2012 Mar 20.
Artículo en Inglés | MEDLINE | ID: mdl-22149974

RESUMEN

Although mesenchymal stem cells (MSCs) of distinct tissue origin have a large number of similarities and differences, it has not been determined so far whether tissue-resident MSCs are the progenies of one ancestor cell lineage or the results of parallel cell developmental events. Here we compared the expression levels of 177 genes in murine MSCs derived from adult and juvenile bone marrow and adult adipose tissue, as well as juvenile spleen, thymus, and aorta wall by quantitative real-time polymerase chain reaction and the results were partially validated at protein level. All MSC lines uniformly expressed a large set of genes including well-known mesenchymal markers, such as α-smooth muscle actin, collagen type I α-chain, GATA6, Mohawk, and vimentin. In contrast, pluripotency genes and the early mesodermal marker T-gene were not expressed. On the other hand, different MSC lines consistently expressed distinct patterns of Hox genes determining the positional identity of a given cell population. Moreover, MSCs of different origin expressed a few other transcription factors also reflecting their topological identity and so the body segment or organ to which they normally contributed in vivo: (1) thymus-derived cells specifically expressed Tbx5 and Pitx2; (2) spleen-derived MSCs were characterized with Tlx1 and Nkx2.5; (3) Pitx1 designated femoral bone marrow cells and (4) En2 appeared in aorta wall-derived MSCs. Thus, MSCs exhibited topographic identity and memory even after long-term cultivation in vitro. On the basis of these results, we suggest that postnatal MSCs isolated from different anatomical sites descend from precursor cells developing in the postsegmentation mesoderm.


Asunto(s)
Perfilación de la Expresión Génica , Regulación del Desarrollo de la Expresión Génica , Células Madre Mesenquimatosas/citología , Células Madre Mesenquimatosas/metabolismo , Mesodermo/citología , Tejido Adiposo/citología , Tejido Adiposo/crecimiento & desarrollo , Animales , Aorta/citología , Aorta/crecimiento & desarrollo , Western Blotting , Células de la Médula Ósea/citología , Linaje de la Célula/genética , Células Cultivadas , Análisis por Conglomerados , Citometría de Flujo , Proteínas de Homeodominio/genética , Proteínas de Homeodominio/metabolismo , Mesodermo/crecimiento & desarrollo , Ratones , Ratones Endogámicos C57BL , Proteínas del Tejido Nervioso/genética , Proteínas del Tejido Nervioso/metabolismo , Análisis de Secuencia por Matrices de Oligonucleótidos , Factores de Transcripción Paired Box/genética , Factores de Transcripción Paired Box/metabolismo , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Bazo/citología , Bazo/crecimiento & desarrollo , Proteínas de Dominio T Box/genética , Proteínas de Dominio T Box/metabolismo , Timo/citología , Timo/crecimiento & desarrollo , Factores de Tiempo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA