Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Sensors (Basel) ; 19(5)2019 Mar 07.
Artículo en Inglés | MEDLINE | ID: mdl-30866566

RESUMEN

In early December 2015, a rapid sequence of strong paroxysmal events took place at the Mt. Etna crater area (Sicily, Italy). Intense paroxysms from the Voragine crater (VOR) generated an eruptive column extending up to an altitude of about 15 km above sea level. In the following days, other minor ash emissions occurred from summit craters. In this study, we present results achieved by monitoring Mt. Etna plumes by means of RSTASH (Robust Satellite Techniques-Ash) algorithm, running operationally at the Institute of Methodologies for Environmental Analysis (IMAA) on Advanced Very High Resolution Radiometer (AVHRR) data. Results showed that RSTASH detected an ash plume dispersing from Mt. Etna towards Ionian Sea starting from 3 December at 08:40 UTC, whereas it did not identify ash pixels on satellite data of same day at 04:20 UTC and 04:40 UTC (acquired soon after the end of first paroxysm from VOR), due to a mixed cloud containing SO2 and ice. During 8⁻10 December, the continuity of RSTASH detections allowed us to estimate the mass eruption rate (an average value of about 1.5 × 10³ kg/s was retrieved here), quantitatively characterizing the eruptive activity from North East Crater (NEC). The work, exploiting information provided also by Spinning Enhanced Visible and Infrared Imager (SEVIRI) data, confirms the important contribution offered by RSTASH in identifying and tracking ash plumes emitted from Mt. Etna, despite some operational limitations (e.g., cloud coverage). Moreover, it shows that an experimental RST product, tailored to SEVIRI data, for the first time used and preliminarily assessed here, may complement RSTASH detections providing information about areas mostly affected by volcanic SO2.

2.
Sensors (Basel) ; 18(2)2018 Jan 27.
Artículo en Inglés | MEDLINE | ID: mdl-29382058

RESUMEN

The Eyjafjallajökull (Iceland) volcanic eruption of April-May 2010 caused unprecedented air-traffic disruption in Northern Europe, revealing some important weaknesses of current operational ash-monitoring and forecasting systems and encouraging the improvement of methods and procedures for supporting the activities of Volcanic Ash Advisory Centers (VAACs) better. In this work, we compare two established satellite-based algorithms for ash detection, namely RSTASH and the operational London VAAC method, both exploiting sensor data of the spinning enhanced visible and infrared imager (SEVIRI). We analyze similarities and differences in the identification of ash clouds during the different phases of the Eyjafjallajökull eruption. The work reveals, in some cases, a certain complementary behavior of the two techniques, whose combination might improve the identification of ash-affected areas in specific conditions. This is indicated by the quantitative comparison of the merged SEVIRI ash product, achieved integrating outputs of the RSTASH and London VAAC methods, with independent atmospheric infrared sounder (AIRS) DDA (dust-detection algorithm) observations.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA