Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 26
Filtrar
1.
BMC Biol ; 22(1): 131, 2024 Jun 03.
Artículo en Inglés | MEDLINE | ID: mdl-38831263

RESUMEN

BACKGROUND: Fine characterization of gene expression patterns is crucial to understand many aspects of embryonic development. The chicken embryo is a well-established and valuable animal model for developmental biology. The period spanning from the third to sixth embryonic days (E3 to E6) is critical for many organ developments. Hybridization chain reaction RNA fluorescent in situ hybridization (HCR RNA-FISH) enables multiplex RNA detection in thick samples including embryos of various animal models. However, its use is limited by tissue opacity. RESULTS: We optimized HCR RNA-FISH protocol to efficiently label RNAs in whole mount chicken embryos from E3.5 to E5.5 and adapted it to ethyl cinnamate (ECi) tissue clearing. We show that light sheet imaging of HCR RNA-FISH after ECi clearing allows RNA expression analysis within embryonic tissues with good sensitivity and spatial resolution. Finally, whole mount immunofluorescence can be performed after HCR RNA-FISH enabling as exemplified to assay complex spatial relationships between axons and their environment or to monitor GFP electroporated neurons. CONCLUSIONS: We could extend the use of HCR RNA-FISH to older chick embryos by optimizing HCR RNA-FISH and combining it with tissue clearing and 3D imaging. The integration of immunostaining makes possible to combine gene expression with classical cell markers, to correlate expressions with morphological differentiation and to depict gene expressions in gain or loss of function contexts. Altogether, this combined procedure further extends the potential of HCR RNA-FISH technique for chicken embryology.


Asunto(s)
Hibridación Fluorescente in Situ , Animales , Embrión de Pollo , Hibridación Fluorescente in Situ/métodos , Técnica del Anticuerpo Fluorescente/métodos , Imagenología Tridimensional/métodos , ARN/metabolismo , ARN/genética , Regulación del Desarrollo de la Expresión Génica
2.
Development ; 142(11): 2026-36, 2015 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-25953347

RESUMEN

SCHIP1 is a cytoplasmic partner of cortical cytoskeleton ankyrins. The IQCJ-SCHIP1 isoform is a component of axon initial segments and nodes of Ranvier of mature axons in peripheral and central nervous systems, where it associates with membrane complexes comprising cell adhesion molecules. SCHIP1 is also expressed in the mouse developing central nervous system during embryonic stages of active axonogenesis. Here, we identify a new and early role for SCHIP1 during axon development and establishment of the anterior commissure (AC). The AC is composed of axons from the piriform cortex, the anterior olfactory nucleus and the amygdala. Schip1 mutant mice displayed early defects in AC development that might result from impaired axon growth and guidance. In addition, mutant mice presented a reduced thickness of the piriform cortex, which affected projection neurons in layers 2/3 and was likely to result from cell death rather than from impairment of neuron generation or migration. Piriform cortex neurons from E14.5 mutant embryos displayed axon initiation/outgrowth delay and guidance defects in vitro. The sensitivity of growth cones to semaphorin 3F and Eph receptor B2, two repulsive guidance cues crucial for AC development, was increased, providing a possible basis for certain fiber tract alterations. Thus, our results reveal new evidence for the involvement of cortical cytoskeleton-associated proteins in the regulation of axon development and their importance for the formation of neuronal circuits.


Asunto(s)
Comisura Anterior Cerebral/embriología , Comisura Anterior Cerebral/metabolismo , Axones/metabolismo , Proteínas Portadoras/metabolismo , Citoesqueleto/metabolismo , Corteza Piriforme/embriología , Corteza Piriforme/metabolismo , Animales , Muerte Celular , Embrión de Mamíferos/metabolismo , Conos de Crecimiento/metabolismo , Ratones , Ratones Mutantes , Proteínas del Tejido Nervioso/metabolismo , Receptor EphB2/metabolismo
3.
Int J Mol Sci ; 18(4)2017 Mar 24.
Artículo en Inglés | MEDLINE | ID: mdl-28338624

RESUMEN

Membrane microdomains or "lipid rafts" have emerged as essential functional modules of the cell, critical for the regulation of growth factor receptor-mediated responses. Herein we describe the dichotomy between caveolin-1 and caveolin-2, structural and regulatory components of microdomains, in modulating proliferation and differentiation. Caveolin-2 potentiates while caveolin-1 inhibits nerve growth factor (NGF) signaling and subsequent cell differentiation. Caveolin-2 does not appear to impair NGF receptor trafficking but elicits prolonged and stronger activation of MAPK (mitogen-activated protein kinase), Rsk2 (ribosomal protein S6 kinase 2), and CREB (cAMP response element binding protein). In contrast, caveolin-1 does not alter initiation of the NGF signaling pathway activation; rather, it acts, at least in part, by sequestering the cognate receptors, TrkA and p75NTR, at the plasma membrane, together with the phosphorylated form of the downstream effector Rsk2, which ultimately prevents CREB phosphorylation. The non-phosphorylatable caveolin-1 serine 80 mutant (S80V), no longer inhibits TrkA trafficking or subsequent CREB phosphorylation. MC192, a monoclonal antibody towards p75NTR that does not block NGF binding, prevents exit of both NGF receptors (TrkA and p75NTR) from lipid rafts. The results presented herein underline the role of caveolin and receptor signaling complex interplay in the context of neuronal development and tumorigenesis.


Asunto(s)
Caveolina 1/metabolismo , Núcleo Celular/metabolismo , Microdominios de Membrana/metabolismo , Factor de Crecimiento Nervioso/farmacología , Transducción de Señal/efectos de los fármacos , Animales , Anticuerpos Monoclonales/inmunología , Proteína de Unión a CREB/metabolismo , Caveolina 1/antagonistas & inhibidores , Caveolina 1/genética , Caveolina 2/antagonistas & inhibidores , Caveolina 2/genética , Caveolina 2/metabolismo , Diferenciación Celular/efectos de los fármacos , Células Cultivadas , Ganglios Espinales/citología , Ganglios Espinales/metabolismo , Ratones , Proteínas del Tejido Nervioso , Células PC12 , Fosforilación/efectos de los fármacos , Unión Proteica , Transporte de Proteínas/efectos de los fármacos , Interferencia de ARN , ARN Interferente Pequeño/metabolismo , Ratas , Receptor de Factor de Crecimiento Nervioso/metabolismo , Receptor trkA/química , Receptor trkA/inmunología , Receptor trkA/metabolismo , Receptores de Factores de Crecimiento , Receptores de Factor de Crecimiento Nervioso/química , Receptores de Factor de Crecimiento Nervioso/inmunología , Receptores de Factor de Crecimiento Nervioso/metabolismo , Proteínas Quinasas S6 Ribosómicas 90-kDa/metabolismo
4.
J Neurosci ; 34(2): 373-91, 2014 Jan 08.
Artículo en Inglés | MEDLINE | ID: mdl-24403139

RESUMEN

The elongation rate of axons is tightly regulated during development. Recycling of the plasma membrane is known to regulate axon extension; however, the specific molecules involved in recycling within the growth cone have not been fully characterized. Here, we investigated whether the small GTPases Rab4 and Rab5 involved in short-loop recycling regulate the extension of Xenopus retinal axons. We report that, in growth cones, Rab5 and Rab4 proteins localize to endosomes, which accumulate markers that are constitutively recycled. Fluorescence recovery after photo-bleaching experiments showed that Rab5 and Rab4 are recruited to endosomes in the growth cone, suggesting that they control recycling locally. Dynamic image analysis revealed that Rab4-positive carriers can bud off from Rab5 endosomes and move to the periphery of the growth cone, suggesting that both Rab5 and Rab4 contribute to recycling within the growth cone. Inhibition of Rab4 function with dominant-negative Rab4 or Rab4 morpholino and constitutive activation of Rab5 decreases the elongation of retinal axons in vitro and in vivo, but, unexpectedly, does not disrupt axon pathfinding. Thus, Rab5- and Rab4-mediated control of endosome trafficking appears to be crucial for axon growth. Collectively, our results suggest that recycling from Rab5-positive endosomes via Rab4 occurs within the growth cone and thereby supports axon elongation.


Asunto(s)
Axones/metabolismo , Neurogénesis/fisiología , Vías Visuales/embriología , Proteínas de Xenopus/metabolismo , Xenopus/embriología , Proteínas de Unión al GTP rab4/metabolismo , Proteínas de Unión al GTP rab5/metabolismo , Animales , Western Blotting , Electroporación , Femenino , Conos de Crecimiento/metabolismo , Inmunohistoquímica , Masculino , Mutagénesis Sitio-Dirigida , Retina/embriología , Retina/metabolismo , Vías Visuales/metabolismo , Xenopus/metabolismo
5.
Neuron ; 48(1): 63-75, 2005 Oct 06.
Artículo en Inglés | MEDLINE | ID: mdl-16202709

RESUMEN

Chemorepulsion by semaphorins plays a critical role during the development of neuronal projections. Although semaphorin-induced chemoattraction has been reported in vitro, the contribution of this activity to axon pathfinding is still unclear. Using genetic and culture models, we provide evidence that both attraction and repulsion by Sema3B, a secreted semaphorin, are critical for the positioning of a major brain commissural projection, the anterior commissure (AC). NrCAM, an immunoglobulin superfamily adhesion molecule of the L1 subfamily, associates with neuropilin-2 and is a component of a receptor complex for Sema3B and Sema3F. Finally, we show that activation of the FAK/Src signaling cascade distinguishes Sema3B-mediated attractive from repulsive axonal responses of neurons forming the AC, revealing a mechanism underlying the dual activity of this guidance cue.


Asunto(s)
Neuronas/metabolismo , Vías Olfatorias , Semaforinas/fisiología , Núcleos Septales/citología , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Factores de Edad , Análisis de Varianza , Animales , Animales Recién Nacidos , Axones/metabolismo , Northern Blotting/métodos , Western Blotting/métodos , Moléculas de Adhesión Celular/metabolismo , Agregación Celular/efectos de los fármacos , Agregación Celular/fisiología , Células Cultivadas , Chlorocebus aethiops , Clonación Molecular/métodos , Técnicas de Cocultivo/métodos , Inhibidores Enzimáticos/farmacología , Quinasa 1 de Adhesión Focal/metabolismo , Conos de Crecimiento/fisiología , Inmunohistoquímica/métodos , Inmunoprecipitación/métodos , Hibridación in Situ/métodos , Indoles/farmacología , Ratones , Ratones Noqueados , Neuropilina-2/metabolismo , Vías Olfatorias/crecimiento & desarrollo , Vías Olfatorias/metabolismo , Unión Proteica/fisiología , ARN Mensajero/biosíntesis , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa/métodos , Semaforinas/deficiencia , Núcleos Septales/crecimiento & desarrollo , Núcleos Septales/metabolismo , Transducción de Señal/fisiología , Sulfonamidas/farmacología , Transfección/métodos , Familia-src Quinasas/fisiología
6.
Curr Opin Neurobiol ; 57: 102-109, 2019 08.
Artículo en Inglés | MEDLINE | ID: mdl-30784977

RESUMEN

Septins, discovered almost half a century ago in yeast, have prominent contributions in a broad range of morphological and functional processes from yeast to human. Septins now emerge as key players of neurodevelopment and more specifically of the mechanisms driving the complex morphological differentiation and compartmentalization of neurons that are fundamental to their function. We review here recent advances in Septin-mediated processes of neuron differentiation, which enlighten similarities and differences between neuron and yeast polarity programs.


Asunto(s)
Saccharomyces cerevisiae , Diferenciación Celular , Humanos , Neurogénesis , Neuronas , Septinas
7.
Cell Rep ; 29(2): 347-362.e5, 2019 Oct 08.
Artículo en Inglés | MEDLINE | ID: mdl-31597096

RESUMEN

Accurate perception of guidance cues is crucial for cell and axon migration. During initial navigation in the spinal cord, commissural axons are kept insensitive to midline repellents. Upon midline crossing in the floor plate, they switch on responsiveness to Slit and Semaphorin repulsive signals and are thus propelled away and prevented from crossing back. Whether and how the different midline repellents control specific aspects of this navigation remain to be elucidated. We set up a paradigm for live-imaging and super-resolution analysis of PlexinA1, Neuropilin-2, and Robo1/2 receptor dynamics during commissural growth cone navigation in chick and mouse embryos. We uncovered a remarkable program of sensitization to midline cues achieved by unique spatiotemporal sequences of receptor allocation at the growth-cone surface that orchestrates receptor-specific growth-cone behavior changes. This reveals post-translational mechanisms whereby coincident guidance signals are temporally resolved to allow the generation of specific guidance responses.


Asunto(s)
Axones/fisiología , Proteínas del Tejido Nervioso/metabolismo , Semaforinas/metabolismo , Animales , Membrana Celular/metabolismo , Embrión de Pollo , Pollos , Embrión de Mamíferos/metabolismo , Conos de Crecimiento/metabolismo , Ratones , Proteínas del Tejido Nervioso/química , Dominios Proteicos , Receptores de Superficie Celular/química , Receptores de Superficie Celular/metabolismo , Receptores Inmunológicos/metabolismo , Proteínas Recombinantes/metabolismo , Factores de Tiempo , Proteínas Roundabout
8.
BMC Dev Biol ; 7: 107, 2007 Sep 27.
Artículo en Inglés | MEDLINE | ID: mdl-17900342

RESUMEN

BACKGROUND: Blastomere injection of mRNA or antisense oligonucleotides has proven effective in analyzing early gene function in Xenopus. However, functional analysis of genes involved in neuronal differentiation and axon pathfinding by this method is often hampered by earlier function of these genes during development. Therefore, fine spatio-temporal control of over-expression or knock-down approaches is required to specifically address the role of a given gene in these processes. RESULTS: We describe here an electroporation procedure that can be used with high efficiency and low toxicity for targeting DNA and antisense morpholino oligonucleotides (MOs) into spatially restricted regions of the Xenopus CNS at a critical time-window of development (22-50 hour post-fertilization) when axonal tracts are first forming. The approach relies on the design of "electroporation chambers" that enable reproducible positioning of fixed-spaced electrodes coupled with accurate DNA/MO injection. Simple adjustments can be made to the electroporation chamber to suit the shape of different aged embryos and to alter the size and location of the targeted region. This procedure can be used to electroporate separate regions of the CNS in the same embryo allowing separate manipulation of growing axons and their intermediate and final targets in the brain. CONCLUSION: Our study demonstrates that electroporation can be used as a versatile tool to investigate molecular pathways involved in axon extension during Xenopus embryogenesis. Electroporation enables gain or loss of function studies to be performed with easy monitoring of electroporated cells. Double-targeted transfection provides a unique opportunity to monitor axon-target interaction in vivo. Finally, electroporated embryos represent a valuable source of MO-loaded or DNA transfected cells for in vitro analysis. The technique has broad applications as it can be tailored easily to other developing organ systems and to other organisms by making simple adjustments to the electroporation chamber.


Asunto(s)
ADN Complementario/genética , Electroporación , Regulación del Desarrollo de la Expresión Génica , Oligonucleótidos Antisentido , Xenopus laevis/embriología , Proteínas de Pez Cebra/genética , Animales , Tipificación del Cuerpo/genética , Sistema Nervioso Central/embriología , Embrión no Mamífero , Proteínas Fluorescentes Verdes , Transfección , Xenopus laevis/genética
9.
Adv Exp Med Biol ; 600: 61-72, 2007.
Artículo en Inglés | MEDLINE | ID: mdl-17607947

RESUMEN

During axon navigation, growth cones continuously interact with molecular cues in their environment, some of which control adherence and bundle assembly, others axon elongation and direction. Growth cone responses to these different environmental cues are tightly coordinated during the development of neuronal projections. Several recent studies show that axon sensitivity to guidance cues is modulated by extracellular and intracellular signals. This regulation may enable different classes of cues to combine their effects and may also represent important means for diversifying pathway choices and for compensating for the limited number of guidance cues. This chapter focuses on the modulation exerted by Ig Super-family cell adhesion molecules (IgSFCAMs) on guidance cues of the class III secreted semaphorins.


Asunto(s)
Moléculas de Adhesión Celular/fisiología , Inmunoglobulinas/fisiología , Semaforinas/fisiología , Transducción de Señal/fisiología , Animales , Moléculas de Adhesión Celular/química , Moléculas de Adhesión Celular/metabolismo , Humanos , Inmunoglobulinas/química , Inmunoglobulinas/metabolismo , Semaforinas/química , Semaforinas/metabolismo
10.
Mol Biol Cell ; 15(10): 4695-709, 2004 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-15254265

RESUMEN

NrCAM is a cell adhesion molecule of the L1 family that is implicated in the control of axonal growth. Adhesive contacts may promote advance of the growth cone by triggering the coupling of membrane receptors with the F-actin retrograde flow. We sought to understand the mechanisms leading to clutching the F-actin at the site of ligand-mediated clustering of NrCAM. Using optical tweezers and single particle tracking of beads coated with the ligand TAG-1, we analyzed the mobility of NrCAM-deletion mutants transfected in a neuroblastoma cell line. Deletion of the cytoplasmic tail did not prevent the coupling of NrCAM to the actin flow. An additional deletion of the FNIII domains to remove cis-interactions, was necessary to abolish the rearward movement of TAG-1 beads, which instead switched to a stationary behavior. Next, we showed that the actin-dependent retrograde movement of NrCAM required partitioning into lipid rafts as indicated by cholesterol depletion experiments using methyl-beta-cyclodextrin. Recruitment of the raft component caveolin-1 was induced at the adhesive contact between the cell surface and TAG-1 beads, indicating that enlarged rafts were generated. Photobleaching experiments showed that the lateral mobility of NrCAM increased with raft dispersion in these contact areas, further suggesting that TAG-1-coated beads induced the coalescence of lipid rafts. In conclusion, we propose that anchoring of NrCAM with the retrograde actin flow can be triggered by adhesive contacts via cooperative processes including interactions with the cytoplasmic tail, formation of cis-complex via the FNIII repeats, and lipid raft aggregation.


Asunto(s)
Moléculas de Adhesión Celular/metabolismo , Citoesqueleto/metabolismo , Microdominios de Membrana/metabolismo , Actinas/metabolismo , Animales , Transporte Biológico/fisiología , Moléculas de Adhesión Celular/genética , Moléculas de Adhesión Celular Neuronal/metabolismo , Línea Celular Tumoral , Contactina 2 , Microdominios de Membrana/química , Unión Proteica , Estructura Terciaria de Proteína , Ratas , Proteínas Recombinantes de Fusión/genética , Proteínas Recombinantes de Fusión/metabolismo
11.
Neuron ; 95(4): 834-851.e5, 2017 Aug 16.
Artículo en Inglés | MEDLINE | ID: mdl-28817802

RESUMEN

Transmission of polarity established early during cell lineage history is emerging as a key process guiding cell differentiation. Highly polarized neurons provide a fascinating model to study inheritance of polarity over cell generations and across morphological transitions. Neural crest cells (NCCs) migrate to the dorsal root ganglia to generate neurons directly or after cell divisions in situ. Using live imaging of vertebrate embryo slices, we found that bipolar NCC progenitors lose their polarity, retracting their processes to round for division, but generate neurons with bipolar morphology by emitting processes from the same locations as the progenitor. Monitoring the dynamics of Septins, which play key roles in yeast polarity, indicates that Septin 7 tags process sites for re-initiation of process growth following mitosis. Interfering with Septins blocks this mechanism. Thus, Septins store polarity features during mitotic rounding so that daughters can reconstitute the initial progenitor polarity.


Asunto(s)
Polaridad Celular/genética , Forma de la Célula/genética , Regulación del Desarrollo de la Expresión Génica/genética , Neurogénesis/genética , Neuronas/fisiología , Septinas/metabolismo , Animales , Ciclo Celular/genética , Diferenciación Celular/genética , Células Cultivadas , Corteza Cerebral/citología , Embrión de Pollo , Electroporación , Ganglios Espinales/citología , Ganglios Espinales/embriología , Neuritas/fisiología , Neuronas/citología , Técnicas de Cultivo de Órganos , ARN Interferente Pequeño/genética , ARN Interferente Pequeño/metabolismo , Septinas/genética , Médula Espinal/citología , Médula Espinal/embriología , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Levaduras/genética
12.
Curr Biol ; 27(2): 270-278, 2017 Jan 23.
Artículo en Inglés | MEDLINE | ID: mdl-28065605

RESUMEN

Most neuronal populations form on both the left and right sides of the brain. Their efferent axons appear to grow synchronously along similar pathways on each side, although the neurons or their environment often differ between the two hemispheres [1-4]. How this coordination is controlled has received little attention. Frequently, neurons establish interhemispheric connections, which can function to integrate information between brain hemispheres (e.g., [5]). Such commissures form very early, suggesting their potential developmental role in coordinating ipsilateral axon navigation during embryonic development [4]. To address the temporal-spatial control of bilateral axon growth, we applied long-term time-lapse imaging to visualize the formation of the conserved left-right asymmetric habenular neural circuit in the developing zebrafish embryo [6]. Although habenular neurons are born at different times across brain hemispheres [7], we found that elongation of habenular axons occurs synchronously. The initiation of axon extension is not controlled within the habenular network itself but through an early developing proximal diencephalic network. The commissural neurons of this network influence habenular axons both ipsilaterally and contralaterally. Their unilateral absence impairs commissure formation and coordinated habenular axon elongation and causes their subsequent arrest on both sides of the brain. Thus, habenular neural circuit formation depends on a second intersecting commissural network, which facilitates the exchange of information between hemispheres required for ipsilaterally projecting habenular axons. This mechanism of network formation may well apply to other circuits, and has only remained undiscovered due to technical limitations.


Asunto(s)
Axones/fisiología , Diencéfalo/fisiología , Neuronas/fisiología , Pez Cebra/fisiología , Animales , Tipificación del Cuerpo , Diencéfalo/citología , Embrión no Mamífero/citología , Embrión no Mamífero/fisiología , Neurogénesis , Neuronas/citología , Imagen de Lapso de Tiempo , Pez Cebra/crecimiento & desarrollo , Proteínas de Pez Cebra/metabolismo
13.
Elife ; 62017 06 22.
Artículo en Inglés | MEDLINE | ID: mdl-28639940

RESUMEN

The diaphragm muscle is essential for breathing in mammals. Its asymmetric elevation during contraction correlates with morphological features suggestive of inherent left-right (L/R) asymmetry. Whether this asymmetry is due to L versus R differences in the muscle or in the phrenic nerve activity is unknown. Here, we have combined the analysis of genetically modified mouse models with transcriptomic analysis to show that both the diaphragm muscle and phrenic nerves have asymmetries, which can be established independently of each other during early embryogenesis in pathway instructed by Nodal, a morphogen that also conveys asymmetry in other organs. We further found that phrenic motoneurons receive an early L/R genetic imprint, with L versus R differences both in Slit/Robo signaling and MMP2 activity and in the contribution of both pathways to establish phrenic nerve asymmetry. Our study therefore demonstrates L-R imprinting of spinal motoneurons and describes how L/R modulation of axon guidance signaling helps to match neural circuit formation to organ asymmetry.


Asunto(s)
Diafragma/embriología , Diafragma/inervación , Vías Nerviosas/embriología , Nervio Frénico/embriología , Animales , Animales Modificados Genéticamente , Perfilación de la Expresión Génica , Ratones , Neuronas Motoras/fisiología , Proteína Nodal/metabolismo , Transducción de Señal
14.
Front Mol Neurosci ; 8: 2, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-25698920

RESUMEN

The development of gene transfection technologies has greatly advanced our understanding of life sciences. While use of viral vectors has clear efficacy, it requires specific expertise and biological containment conditions. Electroporation has become an effective and commonly used method for introducing DNA into neurons and in intact brain tissue. The present study describes the use of the Neon® electroporation system to transfect genes into dorsal root ganglia neurons isolated from embryonic mouse Day 13.5-16. This cell type has been particularly recalcitrant and refractory to physical or chemical methods for introduction of DNA. By optimizing the culture condition and parameters including voltage and duration for this specific electroporation system, high efficiency (60-80%) and low toxicity (>60% survival) were achieved with robust differentiation in response to Nerve growth factor (NGF). Moreover, 3-50 times fewer cells are needed (6 × 10(4)) compared with other traditional electroporation methods. This approach underlines the efficacy of this type of electroporation, particularly when only limited amount of cells can be obtained, and is expected to greatly facilitate the study of gene function in dorsal root ganglia neuron cultures.

15.
Nat Commun ; 6: 6366, 2015 Feb 27.
Artículo en Inglés | MEDLINE | ID: mdl-25721514

RESUMEN

The spatial orientation of cell divisions is fundamental for tissue architecture and homeostasis. Here we analysed neuroepithelial progenitors in the developing mouse spinal cord to determine whether extracellular signals orient the mitotic spindle. We report that Semaphorin3B (Sema3B) released from the floor plate and the nascent choroid plexus in the cerebrospinal fluid (CSF) controls progenitor division orientation. Delivery of exogenous Sema3B to neural progenitors after neural tube opening in living embryos promotes planar orientation of their division. Preventing progenitor access to cues present in the CSF by genetically engineered canal obstruction affects the proportion of planar and oblique divisions. Sema3B knockout phenocopies the loss of progenitor access to the CSF. Sema3B binds to the apical surface of mitotic progenitors and exerts its effect via Neuropilin receptors, GSK3 activation and subsequent inhibition of the microtubule stabilizer CRMP2. Thus, extrinsic control mediated by the Semaphorin signalling orients progenitor divisions in neurogenic zones.


Asunto(s)
División Celular/fisiología , Polaridad Celular/fisiología , Células Neuroepiteliales/fisiología , Semaforinas/líquido cefalorraquídeo , Semaforinas/metabolismo , Médula Espinal/embriología , Animales , Western Blotting , Técnica del Anticuerpo Fluorescente , Células HeLa , Humanos , Hibridación in Situ , Péptidos y Proteínas de Señalización Intercelular/metabolismo , Ratones , Ratones Noqueados , Proteínas del Tejido Nervioso/metabolismo , Neuropilinas/metabolismo , Médula Espinal/citología , Estadísticas no Paramétricas
16.
Nat Neurosci ; 18(1): 36-45, 2015 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-25485759

RESUMEN

Robo-Slit and Plexin-Semaphorin signaling participate in various developmental and pathogenic processes. During commissural axon guidance in the spinal cord, chemorepulsion by Semaphorin3B and Slits controls midline crossing. Slit processing generates an N-terminal fragment (SlitN) that binds to Robo1 and Robo2 receptors and mediates Slit repulsive activity, as well as a C-terminal fragment (SlitC) with an unknown receptor and bioactivity. We identified PlexinA1 as a Slit receptor and found that it binds the C-terminal Slit fragment specifically and transduces a SlitC signal independently of the Robos and the Neuropilins. PlexinA1-SlitC complexes are detected in spinal cord extracts, and ex vivo, SlitC binding to PlexinA1 elicits a repulsive commissural response. Analysis of various ligand and receptor knockout mice shows that PlexinA1-Slit and Robo-Slit signaling have complementary roles during commissural axon guidance. Thus, PlexinA1 mediates both Semaphorin and Slit signaling, and Slit processing generates two active fragments, each exerting distinct effects through specific receptors.


Asunto(s)
Axones/fisiología , Proteínas del Tejido Nervioso/fisiología , Fragmentos de Péptidos/fisiología , Receptores de Superficie Celular/fisiología , Animales , Células Cultivadas , Embrión de Pollo , Genotipo , Conos de Crecimiento , Ratones , ARN Interferente Pequeño/genética , Médula Espinal/anatomía & histología , Médula Espinal/citología
17.
J Vis Exp ; (83): e50883, 2014 Jan 12.
Artículo en Inglés | MEDLINE | ID: mdl-24458135

RESUMEN

During development, axon guidance receptors play a crucial role in regulating axons sensitivity to both attractive and repulsive cues. Indeed, activation of the guidance receptors is the first step of the signaling mechanisms allowing axon tips, the growth cones, to respond to the ligands. As such, the modulation of their availability at the cell surface is one of the mechanisms that participate in setting the growth cone sensitivity. We describe here a method to precisely visualize the spatio-temporal cell surface dynamics of an axon guidance receptor both in vitro and in vivo in the developing chick spinal cord. We took advantage of the pH-dependent fluorescence property of a green fluorescent protein (GFP) variant to specifically detect the fraction of the axon guidance receptor that is addressed to the plasma membrane. We first describe the in vitro validation of such pH-dependent constructs and we further detail their use in vivo, in the chick spinal chord, to assess the spatio-temporal dynamics of the axon guidance receptor of interest.


Asunto(s)
Axones/fisiología , Moléculas de Adhesión Celular/fisiología , Proteínas Fluorescentes Verdes/química , Proteínas del Tejido Nervioso/fisiología , Receptores de Superficie Celular/fisiología , Médula Espinal/fisiología , Animales , Células COS , Membrana Celular/fisiología , Células Cultivadas , Embrión de Pollo , Chlorocebus aethiops , Electroporación , Concentración de Iones de Hidrógeno
18.
PLoS One ; 7(1): e29976, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-22253844

RESUMEN

Neuromuscular junction (NMJ) formation requires the highly coordinated communication of several reciprocal signaling processes between motoneurons and their muscle targets. Identification of the early, spatially restricted cues in target recognition at the NMJ is still poorly documented, especially in mammals. Wnt signaling is one of the key pathways regulating synaptic connectivity. Here, we report that Wnt4 contributes to the formation of vertebrate NMJ in vivo. Results from a microarray screen and quantitative RT-PCR demonstrate that Wnt4 expression is regulated during muscle cell differentiation in vitro and muscle development in vivo, being highly expressed when the first synaptic contacts are formed and subsequently downregulated. Analysis of the mouse Wnt4⁻/⁻ NMJ phenotype reveals profound innervation defects including motor axons overgrowing and bypassing AChR aggregates with 30% of AChR clusters being unapposed by nerve terminals. In addition, loss of Wnt4 function results in a 35% decrease of the number of prepatterned AChR clusters while Wnt4 overexpression in cultured myotubes increases the number of AChR clusters demonstrating that Wnt4 directly affects postsynaptic differentiation. In contrast, muscle structure and the localization of several synaptic proteins including acetylcholinesterase, MuSK and rapsyn are not perturbed in the Wnt4 mutant. Finally, we identify MuSK as a Wnt4 receptor. Wnt4 not only interacts with MuSK ectodomain but also mediates MuSK activation. Taken together our data reveal a new role for Wnt4 in mammalian NMJ formation that could be mediated by MuSK, a key receptor in synaptogenesis.


Asunto(s)
Unión Neuromuscular/embriología , Vertebrados/embriología , Proteína Wnt4/metabolismo , Animales , Biomarcadores/metabolismo , Tipificación del Cuerpo/genética , Células COS , Chlorocebus aethiops , Análisis por Conglomerados , Embrión de Mamíferos/metabolismo , Regulación del Desarrollo de la Expresión Génica , Células HEK293 , Humanos , Ratones , Células Musculares/metabolismo , Células Musculares/patología , Músculos/embriología , Músculos/inervación , Músculos/patología , Músculos/ultraestructura , Unión Neuromuscular/metabolismo , Unión Neuromuscular/patología , Unión Neuromuscular/ultraestructura , Fosforilación , Unión Proteica , Proteínas Tirosina Quinasas Receptoras/metabolismo , Receptores Colinérgicos/metabolismo , Vertebrados/genética , Proteína Wnt4/deficiencia , Proteína Wnt4/genética
19.
Neuron ; 75(6): 1051-66, 2012 Sep 20.
Artículo en Inglés | MEDLINE | ID: mdl-22998873

RESUMEN

The Neurotrophic factor gdnf plays diverse developmental roles, supporting survival and also acting as a chemoattractant for axon and cell migration. We report that in the developing spinal cord, a focal source of gdnf is present in the floor plate (FP) where commissural axons cross the midline. Gdnf has no direct guidance properties but switches on the responsiveness of crossing commissural growth cones to the midline repellent Semaphorin3B by suppressing calpain-mediated processing of the Sema3B signaling coreceptor Plexin-A1. Analysis of single and double mutant mouse models indicates that although gdnf is the principal trigger of Sema3B midline repulsion, it acts with another FP cue, NrCAM. Finally, genetic and in vitro experiments provide evidence that this gdnf effect is RET independent and mediated by NCAM/GFRα1 signaling. This study identifies a regulator of midline crossing and reveals interplays between Semaphorin and gdnf signaling during axon guidance.


Asunto(s)
Axones/fisiología , Regulación del Desarrollo de la Expresión Génica/fisiología , Factor Neurotrófico Derivado de la Línea Celular Glial/metabolismo , Moléculas de Adhesión de Célula Nerviosa/metabolismo , Neuronas/citología , Semaforinas/metabolismo , Análisis de Varianza , Animales , Axones/efectos de los fármacos , Tipificación del Cuerpo/genética , Calpaína/metabolismo , Movimiento Celular/efectos de los fármacos , Movimiento Celular/genética , Células Cultivadas , Embrión de Mamíferos , Regulación del Desarrollo de la Expresión Génica/efectos de los fármacos , Regulación del Desarrollo de la Expresión Génica/genética , Factor Neurotrófico Derivado de la Línea Celular Glial/deficiencia , Factor Neurotrófico Derivado de la Línea Celular Glial/farmacología , Humanos , Ratones , Ratones Transgénicos , Proteínas del Tejido Nervioso/metabolismo , Moléculas de Adhesión de Célula Nerviosa/genética , Neuronas/efectos de los fármacos , Receptores de Superficie Celular/metabolismo , Semaforinas/genética , Médula Espinal/citología , Médula Espinal/embriología , Transfección
20.
Development ; 135(2): 333-42, 2008 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-18077591

RESUMEN

Sphingosine 1-phosphate (S1P), a lysophospholipid, plays an important chemotactic role in the migration of lymphocytes and germ cells, and is known to regulate aspects of central nervous system development such as neurogenesis and neuronal migration. Its role in axon guidance, however, has not been examined. We show that sphingosine kinase 1, an enzyme that generates S1P, is expressed in areas surrounding the Xenopus retinal axon pathway, and that gain or loss of S1P function in vivo causes errors in axon navigation. Chemotropic assays reveal that S1P elicits fast repulsive responses in retinal growth cones. These responses require heparan sulfate, are sensitive to inhibitors of proteasomal degradation, and involve RhoA and LIM kinase activation. Together, the data identify downstream components that mediate S1P-induced growth cone responses and implicate S1P signalling in axon guidance.


Asunto(s)
Axones/metabolismo , Lisofosfolípidos/metabolismo , Transducción de Señal , Esfingosina/análogos & derivados , Vías Visuales/embriología , Vías Visuales/metabolismo , Xenopus laevis/embriología , Animales , Axones/efectos de los fármacos , Axones/enzimología , Embrión no Mamífero/efectos de los fármacos , Embrión no Mamífero/enzimología , Activación Enzimática/efectos de los fármacos , Regulación del Desarrollo de la Expresión Génica/efectos de los fármacos , Conos de Crecimiento/efectos de los fármacos , Conos de Crecimiento/enzimología , Conos de Crecimiento/patología , Heparitina Sulfato/metabolismo , Humanos , Quinasas Lim/metabolismo , Lisofosfolípidos/farmacología , Ratones , Fosfotransferasas (Aceptor de Grupo Alcohol)/genética , Fosfotransferasas (Aceptor de Grupo Alcohol)/metabolismo , Inhibidores de Proteasoma , Receptores de Lisoesfingolípidos/metabolismo , Retina/efectos de los fármacos , Retina/enzimología , Retina/patología , Transducción de Señal/efectos de los fármacos , Esfingosina/metabolismo , Esfingosina/farmacología , Vías Visuales/efectos de los fármacos , Vías Visuales/enzimología , Proteína de Unión al GTP rhoA/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA