Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 127
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Proc Natl Acad Sci U S A ; 120(11): e2216286120, 2023 03 14.
Artículo en Inglés | MEDLINE | ID: mdl-36897974

RESUMEN

Unlike most higher plants, unicellular algae can acclimate to changes in irradiance on time scales of hours to a few days. The process involves an enigmatic signaling pathway originating in the plastid that leads to coordinated changes in plastid and nuclear gene expression. To deepen our understanding of this process, we conducted functional studies to examine how the model diatom, Phaeodactylum tricornutum, acclimates to low light and sought to identify the molecules responsible for the phenomenon. We show that two transformants with altered expression of two putative signal transduction molecules, a light-specific soluble kinase and a plastid transmembrane protein, that appears to be regulated by a long noncoding natural antisense transcript, arising from the opposite strand, are physiologically incapable of photoacclimation. Based on these results, we propose a working model of the retrograde feedback in the signaling and regulation of photoacclimation in a marine diatom.


Asunto(s)
Diatomeas , Diatomeas/metabolismo , Fototransducción , Transducción de Señal
2.
Proc Natl Acad Sci U S A ; 120(30): e2307524120, 2023 Jul 25.
Artículo en Inglés | MEDLINE | ID: mdl-37459508

RESUMEN

Of the six elements incorporated into the major polymers of life, phosphorus is the least abundant on a global scale [E. Anders, M. Ebihara, Geochim. Cosmochim. Acta 46, 2363-2380 (1982)] and has been described as the "ultimate limiting nutrient" [T. Tyrrell, Nature 400, 525-531 (1999)]. In the modern ocean, the supply of dissolved phosphorus is predominantly sustained by the oxidative remineralization/recycling of organic phosphorus in seawater. However, in the Archean Eon (4 to 2.5 Ga), surface waters were anoxic and reducing. Here, we conducted photochemical experiments to test whether photodegradation of ubiquitous dissolved organic phosphorus could facilitate phosphorus recycling under the simulated Archean conditions. Our results strongly suggest that organic phosphorus compounds, which were produced by marine biota (e.g., adenosine monophosphate and phosphatidylserine) or delivered by meteorites (e.g., methyl phosphonate) can undergo rapid photodegradation and release inorganic phosphate into solution under anoxic conditions. Our experimental results and theoretical calculations indicate that photodegradation of organic phosphorus could have been a significant source of bioavailable phosphorus in the early ocean and would have fueled primary production during the Archean eon.

3.
Proteins ; 92(1): 52-59, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37596815

RESUMEN

The core metabolic reactions of life drive electrons through a class of redox protein enzymes, the oxidoreductases. The energetics of electron flow is determined by the redox potentials of organic and inorganic cofactors as tuned by the protein environment. Understanding how protein structure affects oxidation-reduction energetics is crucial for studying metabolism, creating bioelectronic systems, and tracing the history of biological energy utilization on Earth. We constructed ProtReDox (https://protein-redox-potential.web.app), a manually curated database of experimentally determined redox potentials. With over 500 measurements, we can begin to identify how proteins modulate oxidation-reduction energetics across the tree of life. By mapping redox potentials onto networks of oxidoreductase fold evolution, we can infer the evolution of electron transfer energetics over deep time. ProtReDox is designed to include user-contributed submissions with the intention of making it a valuable resource for researchers in this field.


Asunto(s)
Oxidorreductasas , Oxidorreductasas/química , Oxidación-Reducción , Transporte de Electrón
4.
Photosynth Res ; 159(2-3): 253-259, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38019308

RESUMEN

Phytoplankton in the ocean account for less than 1% of the global photosynthetic biomass, but contribute about 45% of the photosynthetically fixed carbon on Earth. This amazing production/biomass ratio implies a very high photosynthetic efficiency. But, how efficiently is the absorbed light used in marine photosynthesis? The introduction of picosecond and then femtosecond lasers for kinetic measurements in mid 1970s to 90 s was a revolution in basic photosynthesis research that vastly improved our understanding of the energy conversion processes in photosynthetic reactions. Until recently, the use of this technology in the ocean was not feasible due to the complexity of related instrumentation and the lack of picosecond lasers suitable for routine operation in the field. However, recent advances in solid-state laser technology and the development of compact data acquisition electronics led to the application of picosecond fluorescence lifetime analyses in the field. Here, we review the development of operational ultrasensitive picosecond fluorescence instruments to infer photosynthetic energy conversion processes in ocean ecosystems. This analysis revealed that, in spite of the high production/biomass ratio in marine phytoplankton, the photosynthetic energy conversion efficiency is exceptionally low-on average, ca. 50% of its maximum potential, suggesting that most of the contemporary open ocean surface waters are extremely nutrient deficient.


Asunto(s)
Ecosistema , Fotosíntesis , Fluorescencia , Océanos y Mares , Fitoplancton
5.
Plant Physiol ; 190(1): 267-279, 2022 08 29.
Artículo en Inglés | MEDLINE | ID: mdl-35652738

RESUMEN

The rate of algal and cyanobacterial respiration in the light is an important ecophysiological term that remains to be completely characterized and quantified. To address this issue, we exploited process-specific decarboxylation rates from flux balance analysis and isotopically nonstationary metabolic flux analysis. Our study, based on published data, suggested that decarboxylation is about 22% of net CO2 assimilation when the tricarboxylic acid cycle is completely open (characterized by the commitment of alpha ketoglutarate to amino acid synthesis and very low rates of succinate formation). This estimate was supported by calculating the decarboxylation rates required to synthesize the major components of biomass (proteins, lipids, and carbohydrates) at their typical abundance. Of the 22 CO2 molecules produced by decarboxylation (normalized to net assimilation = 100), approximately 13 were from pyruvate and 3 were from isocitrate. The remaining six units of decarboxylation were in the amino acid synthesis pathways outside the tricarboxylic acid cycle. A small additional flux came from photorespiration, decarboxylations of six phosphogluconate in the oxidative pentose phosphate pathway, and decarboxylations in the syntheses of lower-abundance compounds, including pigments and ribonucleic acids. This general approach accounted for the high decarboxylation rates in algae and cyanobacteria compared to terrestrial plants. It prompts a simple speculation for the origin of the Kok effect and helps constrain the photoautotrophic respiration rate, in the light, in the euphotic zone of the ocean and lakes.


Asunto(s)
Dióxido de Carbono , Fitoplancton , Aminoácidos , Dióxido de Carbono/metabolismo , Luz , Fitoplancton/metabolismo , Ácido Pirúvico/metabolismo , Respiración
6.
Proc Natl Acad Sci U S A ; 117(13): 7193-7199, 2020 03 31.
Artículo en Inglés | MEDLINE | ID: mdl-32188785

RESUMEN

Life on Earth is driven by electron transfer reactions catalyzed by a suite of enzymes that comprise the superfamily of oxidoreductases (Enzyme Classification EC1). Most modern oxidoreductases are complex in their structure and chemistry and must have evolved from a small set of ancient folds. Ancient oxidoreductases from the Archean Eon between ca. 3.5 and 2.5 billion years ago have been long extinct, making it challenging to retrace evolution by sequence-based phylogeny or ancestral sequence reconstruction. However, three-dimensional topologies of proteins change more slowly than sequences. Using comparative structure and sequence profile-profile alignments, we quantify the similarity between proximal cofactor-binding folds and show that they are derived from a common ancestor. We discovered that two recurring folds were central to the origin of metabolism: ferredoxin and Rossmann-like folds. In turn, these two folds likely shared a common ancestor that, through duplication, recruitment, and diversification, evolved to facilitate electron transfer and catalysis at a very early stage in the origin of metabolism.


Asunto(s)
Transporte de Electrón , Evolución Molecular , Oxidorreductasas/metabolismo , Ferredoxinas/metabolismo , Flavodoxina/metabolismo , Conformación Proteica
7.
Proc Natl Acad Sci U S A ; 117(37): 22698-22704, 2020 09 15.
Artículo en Inglés | MEDLINE | ID: mdl-32868429

RESUMEN

The oxidation states of manganese minerals in the geological record have been interpreted as proxies for the evolution of molecular oxygen in the Archean eon. Here we report that an Archean manganese mineral, rhodochrosite (MnCO3), can be photochemically oxidized by light under anoxic, abiotic conditions. Rhodochrosite has a calculated bandgap of about 5.4 eV, corresponding to light energy centering around 230 nm. Light at that wavelength would have been present on Earth's surface in the Archean, prior to the formation of stratospheric ozone. We show experimentally that the photooxidation of rhodochrosite in suspension with light centered at 230 nm produced H2 gas and manganite (γ-MnOOH) with an apparent quantum yield of 1.37 × 10-3 moles hydrogen per moles incident photons. Our results suggest that manganese oxides could have formed abiotically on the surface in shallow waters and on continents during the Archean eon in the absence of molecular oxygen.

8.
Proc Natl Acad Sci U S A ; 117(48): 30451-30457, 2020 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-33199597

RESUMEN

Ribulose 1,5-bisphosphate carboxylase/oxygenase (RuBisCO) is the most abundant enzyme on Earth. However, its catalytic rate per molecule of protein is extremely slow and the binding of the primary substrate, CO2, is competitively displaced by O2. Hence, carbon fixation by RuBisCO is highly inefficient; indeed, in higher C3 plants, about 30% of the time the enzyme mistakes CO2 for O2 Using genomic and structural analysis, we identify regions around the catalytic site that play key roles in discriminating between CO2 and O2 Our analysis identified positively charged cavities directly around the active site, which are expanded as the enzyme evolved with higher substrate specificity. The residues that extend these cavities have recently been under selective pressure, indicating that larger charged pockets are a feature of modern RuBisCOs, enabling greater specificity for CO2 This paper identifies a key structural feature that enabled the enzyme to evolve improved CO2 sequestration in an oxygen-rich atmosphere and may guide the engineering of more efficient RuBisCOs.


Asunto(s)
Fenómenos Biofísicos , Modelos Moleculares , Conformación Proteica , Ribulosa-Bifosfato Carboxilasa/química , Dióxido de Carbono/química , Catálisis , Modelos Químicos , Simulación de Dinámica Molecular , Filogenia , Ribulosa-Bifosfato Carboxilasa/clasificación , Ribulosa-Bifosfato Carboxilasa/genética , Análisis Espectral , Especificidad por Sustrato
9.
Photosynth Res ; 153(1-2): 59-70, 2022 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-35391595

RESUMEN

Unicellular photoautotrophs adapt to variations in light intensity by changing the abundance of light harvest pigment-protein complexes (LHCs) on time scales of hours to days. This process requires a feedback signal between the plastid (where light intensity is sensed) to the nucleus (where the genes for LHCs are encoded). The signals must include heretofore unidentified transcription factors that modify the expression level of the LHCs. Analysis of the nuclear genome of the model diatom Phaeodactylum tricornutum revealed that all the lhc genes have potential binding sites for transcription factors belonging to the MYB-family proteins. Functional studies involving antisense RNA interference of a hypothetical protein with a MYB DNA-binding domain were performed. The resultant strains with altered photosynthetic and physiological characteristics lost their ability to acclimate to changes in irradiance; i.e., cellular chlorophyll content became independent of growth irradiance. Our results strongly suggest that the inter-organellar signaling cascade was disrupted, and the cell could no longer communicate the environmental signal from the plastid to the nucleus. Here, we identify, for the first time, an LHC Regulating Myb (LRM) transcription factor, which we propose is involved in lhc gene regulation and photoacclimation mechanisms in response to changes in light intensity.


Asunto(s)
Diatomeas , Clorofila/metabolismo , ADN/metabolismo , Diatomeas/metabolismo , Complejos de Proteína Captadores de Luz/metabolismo , Factores de Transcripción/genética , Factores de Transcripción/metabolismo
10.
Photosynth Res ; 153(1-2): 71-82, 2022 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-35389175

RESUMEN

The redox state of the plastoquinone (PQ) pool is a known sensor for retrograde signaling. In this paper, we asked, "does the redox state of the PQ pool modulate the saturation state of thylakoid lipids?" Data from fatty acid composition and mRNA transcript abundance analyses suggest a strong connection between these two aspects in a model marine diatom. Fatty acid profiles of Phaeodactylum tricornutum exhibited specific changes when the redox state of the PQ pool was modulated by light and two chemical inhibitors [3-(3,4-dichlorophenyl)-1,1-dimethylurea (DCMU) or 2,5-dibromo-3-methyl-6-isopropyl-p-benzoquinone (DBMIB)]. Data from liquid chromatography with tandem mass spectrometry (LC-MS/MS) indicated a ca. 7-20% decrease in the saturation state of all four conserved thylakoid lipids in response to an oxidized PQ pool. The redox signals generated from an oxidized PQ pool in plastids also increased the mRNA transcript abundance of nuclear-encoded C16 fatty acid desaturases (FADs), with peak upregulation on a timescale of 6 to 12 h. The connection between the redox state of the PQ pool and thylakoid lipid saturation suggests a heretofore unrecognized retrograde signaling pathway that couples photosynthetic electron transport and the physical state of thylakoid membrane lipids.


Asunto(s)
Diatomeas , Plastoquinona , Benzoquinonas , Cromatografía Liquida , Diatomeas/metabolismo , Dibromotimoquinona/metabolismo , Diurona/farmacología , Transporte de Electrón , Ácido Graso Desaturasas/análisis , Ácido Graso Desaturasas/metabolismo , Ácidos Grasos/análisis , Luz , Lípidos , Oxidación-Reducción , Plastoquinona/metabolismo , ARN Mensajero/metabolismo , Espectrometría de Masas en Tándem , Tilacoides/metabolismo
11.
Orig Life Evol Biosph ; 52(4): 263-275, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-36383289

RESUMEN

Protein coordinated iron-sulfur clusters drive electron flow within metabolic pathways for organisms throughout the tree of life. It is not known how iron-sulfur clusters were first incorporated into proteins. Structural analogies to iron-sulfide minerals present on early Earth, suggest a connection in the evolution of both proteins and minerals. The availability of large protein and mineral crystallographic structure data sets, provides an opportunity to explore co-evolution of proteins and minerals on a large-scale using informatics approaches. However, quantitative comparisons are confounded by the infinite, repeating nature of the mineral lattice, in contrast to metal clusters in proteins, which are finite in size. We address this problem using the Niggli reduction to transform a mineral lattice to a finite, unique structure that when translated reproduces the crystal lattice. Protein and reduced mineral structures were represented as quotient graphs with the edges and nodes corresponding to bonds and atoms, respectively. We developed a graph theory-based method to calculate the maximum common connected edge subgraph (MCCES) between mineral and protein quotient graphs. MCCES can accommodate differences in structural volumes and easily allows additional chemical criteria to be considered when calculating similarity. To account for graph size differences, we use the Tversky similarity index. Using consistent criteria, we found little similarity between putative ancient iron-sulfur protein clusters and iron-sulfur mineral lattices, suggesting these metal sites are not as evolutionarily connected as once thought. We discuss possible evolutionary implications of these findings in addition to suggesting an alternative proxy, mineral surfaces, for better understanding the coevolution of the geosphere and biosphere.


Asunto(s)
Proteínas Hierro-Azufre , Metaloproteínas , Minerales , Proteínas Hierro-Azufre/química , Proteínas Hierro-Azufre/metabolismo , Azufre/química , Azufre/metabolismo , Hierro/química
12.
Proc Natl Acad Sci U S A ; 116(29): 14557-14562, 2019 07 16.
Artículo en Inglés | MEDLINE | ID: mdl-31262814

RESUMEN

A symmetric origin for bacterial ferredoxins was first proposed over 50 y ago, yet, to date, no functional symmetric molecule has been constructed. It is hypothesized that extant proteins have drifted from their symmetric roots via gene duplication followed by mutations. Phylogenetic analyses of extant ferredoxins support the independent evolution of N- and C-terminal sequences, thereby allowing consensus-based design of symmetric 4Fe-4S molecules. All designs bind two [4Fe-4S] clusters and exhibit strongly reducing midpoint potentials ranging from -405 to -515 mV. One of these constructs efficiently shuttles electrons through a designed metabolic pathway in Escherichia coli These finding establish that ferredoxins consisting of a symmetric core can be used as a platform to design novel electron transfer carriers for in vivo applications. Outer-shell asymmetry increases sequence space without compromising electron transfer functionality.


Asunto(s)
Proteínas de Escherichia coli/genética , Escherichia coli/metabolismo , Ferredoxinas/genética , Ingeniería Metabólica , Secuencia de Consenso/genética , Transporte de Electrón/genética , Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Evolución Molecular , Ferredoxinas/metabolismo , Duplicación de Gen , Redes y Vías Metabólicas/genética , Filogenia
13.
Proc Natl Acad Sci U S A ; 116(35): 17316-17322, 2019 08 27.
Artículo en Inglés | MEDLINE | ID: mdl-31409711

RESUMEN

A descendant of the red algal lineage, diatoms are unicellular eukaryotic algae characterized by thylakoid membranes that lack the spatial differentiation of stroma and grana stacks found in green algae and higher plants. While the photophysiology of diatoms has been studied extensively, very little is known about the spatial organization of the multimeric photosynthetic protein complexes within their thylakoid membranes. Here, using cryo-electron tomography, proteomics, and biophysical analyses, we elucidate the macromolecular composition, architecture, and spatial distribution of photosystem II complexes in diatom thylakoid membranes. Structural analyses reveal 2 distinct photosystem II populations: loose clusters of complexes associated with antenna proteins and compact 2D crystalline arrays of dimeric cores. Biophysical measurements reveal only 1 photosystem II functional absorption cross section, suggesting that only the former population is photosynthetically active. The tomographic data indicate that the arrays of photosystem II cores are physically separated from those associated with antenna proteins. We hypothesize that the islands of photosystem cores are repair stations, where photodamaged proteins can be replaced. Our results strongly imply convergent evolution between the red and the green photosynthetic lineages toward spatial segregation of dynamic, functional microdomains of photosystem II supercomplexes.


Asunto(s)
Organismos Acuáticos/enzimología , Proteínas Bacterianas/química , Diatomeas/enzimología , Complejo de Proteína del Fotosistema II/química , Tilacoides/enzimología , Proteínas Bacterianas/metabolismo , Complejo de Proteína del Fotosistema II/metabolismo
14.
J Struct Biol ; 213(3): 107746, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-34010667

RESUMEN

A long-standing challenge in cell biology is elucidating the structure and spatial distribution of individual membrane-bound proteins, protein complexes and their interactions in their native environment. Here, we describe a workflow that combines on-grid immunogold labeling, followed by cryo-electron tomography (cryoET) imaging and structural analyses to identify and characterize the structure of photosystem II (PSII) complexes. Using an antibody specific to a core subunit of PSII, the D1 protein (uniquely found in the water splitting complex in all oxygenic photoautotrophs), we identified PSII complexes in biophysically active thylakoid membranes isolated from a model marine diatom Phaeodactylum tricornutum. Subsequent cryoET analyses of these protein complexes resolved two PSII structures: supercomplexes and dimeric cores. Our integrative approach establishes the structural signature of multimeric membrane protein complexes in their native environment and provides a pathway to elucidate their high-resolution structures.


Asunto(s)
Diatomeas , Tilacoides , Diatomeas/metabolismo , Tomografía con Microscopio Electrónico , Complejos de Proteína Captadores de Luz/análisis , Complejos de Proteína Captadores de Luz/química , Complejos de Proteína Captadores de Luz/metabolismo , Complejo de Proteína del Fotosistema II/análisis , Complejo de Proteína del Fotosistema II/química , Complejo de Proteína del Fotosistema II/metabolismo , Tilacoides/química , Tilacoides/metabolismo
15.
Annu Rev Microbiol ; 70: 45-62, 2016 09 08.
Artículo en Inglés | MEDLINE | ID: mdl-27297124

RESUMEN

All life on Earth is dependent on biologically mediated electron transfer (i.e., redox) reactions that are far from thermodynamic equilibrium. Biological redox reactions originally evolved in prokaryotes and ultimately, over the first ∼2.5 billion years of Earth's history, formed a global electronic circuit. To maintain the circuit on a global scale requires that oxidants and reductants be transported; the two major planetary wires that connect global metabolism are geophysical fluids-the atmosphere and the oceans. Because all organisms exchange gases with the environment, the evolution of redox reactions has been a major force in modifying the chemistry at Earth's surface. Here we briefly review the discovery and consequences of redox reactions in microbes with a specific focus on the coevolution of life and geochemical phenomena.


Asunto(s)
Bacterias/metabolismo , Evolución Biológica , Planeta Tierra , Ecosistema , Transporte de Electrón , Oxidación-Reducción
16.
Glob Chang Biol ; 27(13): 3133-3144, 2021 07.
Artículo en Inglés | MEDLINE | ID: mdl-33749034

RESUMEN

In a rapidly warming world, we ask, "What limits the potential of marine diatoms to acclimate to elevated temperatures?," a group of ecologically successful unicellular eukaryotic photoautotrophs that evolved in a cooler ocean and are critical to marine food webs. To this end, we examined thermal tolerance mechanisms related to photosynthesis in the sequenced and transformable model diatom Phaeodactylum tricornutum. Data from transmission electron microscopy (TEM) and fatty acid methyl ester-gas chromatography mass spectrometry (FAME-GCMS) suggest that saturating thylakoid-associated fatty acids allowed rapid (on the order of hours) thermal tolerance up to 28.5°C. Beyond this critical temperature, thylakoid ultrastructure became severely perturbed. Biophysical analyses revealed that electrochemical leakage through the thylakoid membranes was extremely sensitive to elevated temperature (Q10 of 3.5). Data suggest that the loss of the proton motive force (pmf) occurred even when heat-labile photosystem II (PSII) was functioning, and saturation of thylakoid-associated fatty acids was active. Indeed, growth was inhibited when leakage of pmf through thylakoid membranes was insufficiently compensated by proton input from PSII. Our findings provide a mechanistic understanding of the importance of rapid saturation of thylakoid-associated fatty acids for ultrastructure maintenance and a generation of pmf at elevated temperatures. To the extent these experimental results apply, the ability of diatoms to generate a pmf may be a sensitive parameter for thermal sensitivity diagnosis in phytoplankton.


Asunto(s)
Diatomeas , Tilacoides , Aclimatación , Ácidos Grasos/metabolismo , Fotosíntesis , Fuerza Protón-Motriz , Tilacoides/metabolismo
17.
Nature ; 524(7565): 366-9, 2015 Aug 20.
Artículo en Inglés | MEDLINE | ID: mdl-26168400

RESUMEN

Diatoms are one of the most ecologically successful classes of photosynthetic marine eukaryotes in the contemporary oceans. Over the past 30 million years, they have helped to moderate Earth's climate by absorbing carbon dioxide from the atmosphere, sequestering it via the biological carbon pump and ultimately burying organic carbon in the lithosphere. The proportion of planetary primary production by diatoms in the modern oceans is roughly equivalent to that of terrestrial rainforests. In photosynthesis, the efficient conversion of carbon dioxide into organic matter requires a tight control of the ATP/NADPH ratio which, in other photosynthetic organisms, relies principally on a range of plastid-localized ATP generating processes. Here we show that diatoms regulate ATP/NADPH through extensive energetic exchanges between plastids and mitochondria. This interaction comprises the re-routing of reducing power generated in the plastid towards mitochondria and the import of mitochondrial ATP into the plastid, and is mandatory for optimized carbon fixation and growth. We propose that the process may have contributed to the ecological success of diatoms in the ocean.


Asunto(s)
Organismos Acuáticos/metabolismo , Dióxido de Carbono/metabolismo , Diatomeas/citología , Diatomeas/metabolismo , Mitocondrias/metabolismo , Fotosíntesis , Plastidios/metabolismo , Fuerza Protón-Motriz , Adenosina Trifosfato/metabolismo , Organismos Acuáticos/citología , Organismos Acuáticos/enzimología , Organismos Acuáticos/genética , Ciclo del Carbono , Diatomeas/enzimología , Diatomeas/genética , Ecosistema , Proteínas Mitocondriales/deficiencia , Proteínas Mitocondriales/metabolismo , NADP/metabolismo , Océanos y Mares , Oxidación-Reducción , Oxidorreductasas/deficiencia , Oxidorreductasas/metabolismo , Fenotipo , Proteínas de Plantas/metabolismo
18.
Proc Natl Acad Sci U S A ; 115(6): 1280-1285, 2018 02 06.
Artículo en Inglés | MEDLINE | ID: mdl-29358375

RESUMEN

Oxidoreductases catalyze electron transfer reactions that ultimately provide the energy for life. A limited set of ancestral protein-metal modules are presumably the building blocks that evolved into this diverse protein family. However, the identity of these modules and their path to modern oxidoreductases is unknown. Using a comparative structural analysis approach, we identify a set of fundamental electron transfer modules that have evolved to form the extant oxidoreductases. Using transition metal-containing cofactors as fiducial markers, it is possible to cluster cofactor microenvironments into as few as four major modules: bacterial ferredoxin, cytochrome c, symerythrin, and plastocyanin-type folds. From structural alignments, it is challenging to ascertain whether modules evolved from a single common ancestor (homology) or arose by independent convergence on a limited set of structural forms (analogy). Additional insight into common origins is contained in the spatial adjacency network (SPAN), which is based on proximity of modules in oxidoreductases containing multiple cofactor electron transfer chains. Electron transfer chains within complex modern oxidoreductases likely evolved through repeated duplication and diversification of ancient modular units that arose in the Archean eon.


Asunto(s)
Coenzimas/metabolismo , Evolución Molecular , Oxidorreductasas/química , Oxidorreductasas/metabolismo , Proteínas Bacterianas/química , Proteínas Bacterianas/metabolismo , Coenzimas/química , Citocromos c/química , Citocromos c/metabolismo , Transporte de Electrón , Ferredoxinas/química , Ferredoxinas/metabolismo , Metales/química , Metales/metabolismo , Modelos Moleculares , Plastocianina/química , Plastocianina/metabolismo , Conformación Proteica , Homología Estructural de Proteína
19.
J Am Chem Soc ; 142(29): 12811-12825, 2020 07 22.
Artículo en Inglés | MEDLINE | ID: mdl-32568532

RESUMEN

Materials science has been informed by nonclassical pathways to crystallization, based on biological processes, about the fabrication of damage-tolerant composite materials. Various biomineralizing taxa, such as stony corals, deposit metastable, magnesium-rich, amorphous calcium carbonate nanoparticles that further assemble and transform into higher-order mineral structures. Here, we examine a similar process in abiogenic conditions using synthetic, amorphous calcium magnesium carbonate nanoparticles. Applying a combination of high-resolution imaging and in situ solid-state nuclear magnetic resonance spectroscopy, we reveal the underlying mechanism of the solid-state phase transformation of these amorphous nanoparticles into crystals under aqueous conditions. These amorphous nanoparticles are covered by a hydration shell of bound water molecules. Fast chemical exchanges occur: the hydrogens present within the nanoparticles exchange with the hydrogens from the surface-bound H2O molecules which, in turn, exchange with the hydrogens of the free H2O molecule of the surrounding aqueous medium. This cascade of chemical exchanges is associated with an enhanced mobility of the ions/molecules that compose the nanoparticles which, in turn, allow for their rearrangement into crystalline domains via solid-state transformation. Concurrently, the starting amorphous nanoparticles aggregate and form ordered mineral structures through crystal growth by particle attachment. Sphere-like aggregates and spindle-shaped structures were, respectively, formed from relatively high or low weights per volume of the same starting amorphous nanoparticles. These results offer promising prospects for exerting control over such a nonclassical pathway to crystallization to design mineral structures that could not be achieved through classical ion-by-ion growth.

20.
Glob Chang Biol ; 26(1): 31-53, 2020 01.
Artículo en Inglés | MEDLINE | ID: mdl-31696576

RESUMEN

Hard, or stony, corals make rocks that can, on geological time scales, lead to the formation of massive reefs in shallow tropical and subtropical seas. In both historical and contemporary oceans, reef-building corals retain information about the marine environment in their skeletons, which is an organic-inorganic composite material. The elemental and isotopic composition of their skeletons is frequently used to reconstruct the environmental history of Earth's oceans over time, including temperature, pH, and salinity. Interpretation of this information requires knowledge of how the organisms formed their skeletons. The basic mechanism of formation of calcium carbonate skeleton in stony corals has been studied for decades. While some researchers consider coral skeletons as mainly passive recorders of ocean conditions, it has become increasingly clear that biological processes play key roles in the biomineralization mechanism. Understanding the role of the animal in living stony coral biomineralization and how it evolved has profound implications for interpreting environmental signatures in fossil corals to understand past ocean conditions. Here we review historical hypotheses and discuss the present understanding of how corals evolved and how their skeletons changed over geological time. We specifically explain how biological processes, particularly those occurring at the subcellular level, critically control the formation of calcium carbonate structures. We examine the different models that address the current debate including the tissue-skeleton interface, skeletal organic matrix, and biomineralization pathways. Finally, we consider how understanding the biological control of coral biomineralization is critical to informing future models of coral vulnerability to inevitable global change, particularly increasing ocean acidification.


Asunto(s)
Antozoos , Animales , Calcificación Fisiológica , Carbonato de Calcio , Arrecifes de Coral , Concentración de Iones de Hidrógeno , Océanos y Mares , Agua de Mar
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA