Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
1.
Neuroimage ; 298: 120778, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39122057

RESUMEN

BACKGROUND: Clinical and translational research has identified deficits in the dopaminergic neurotransmission in the striatum in Alzheimer's disease (AD) and this could be related to the pathophysiology of psychiatric symptoms appearing even at early stages of the pathology. HYPOTHESIS: We hypothesized that AD pathology in the hippocampus may influence dopaminergic neurotransmission even in the absence of AD-related lesion in the mesostriatal circuit. METHODS: We chemogenetically manipulated the activity of hippocampal neurons and astrocytes in wild-type and hemizygous TgF344-AD (Tg) rats, an animal model of AD pathology. We assessed the brain-wide functional output of this manipulation using in vivo Single Photon Emission Computed Tomography to measure cerebral blood flow and D2/3 receptor binding, in response to acute (3 mg kg-1 i.p.) and chronic (0.015 mg/ml in drinking water, 28 days) stimulation of neurons or astrocytes with clozapine N-oxide. We also assessed the effects of the chronic chemogenetic manipulations on D2 receptor density, low or high aggregated forms of amyloid Aß40 and Aß42, astrocytes and microglial reactivity, and the capacity of astrocytes and microglia to surround and phagocytize Aß both locally and in the striatum. RESULTS: We showed that acute and chronic neuronal and astrocytic stimulation induces widespread effects on the brain regional activation pattern, notably with an inhibition of striatal activation. In the Tg rats, both these effects were blunted. Chemogenetic stimulation in the hippocampus increased microglial density and its capacity to limit AD pathology, whereas these effects were absent in the striatum perhaps as a consequence of the altered connectivity between the hippocampus and the striatum. CONCLUSIONS: Our work suggests that hippocampal AD pathology may alter mesostriatal signalling and induce widespread alterations of brain activity. Neuronal and astrocytic activation may induce a protective, Aß-limiting phenotype of microglia, which surrounds Aß plaques and limits Αß concentration more efficiently.


Asunto(s)
Enfermedad de Alzheimer , Astrocitos , Cuerpo Estriado , Dopamina , Hipocampo , Animales , Enfermedad de Alzheimer/metabolismo , Enfermedad de Alzheimer/fisiopatología , Enfermedad de Alzheimer/patología , Astrocitos/metabolismo , Ratas , Hipocampo/metabolismo , Dopamina/metabolismo , Cuerpo Estriado/metabolismo , Masculino , Modelos Animales de Enfermedad , Locomoción/fisiología , Locomoción/efectos de los fármacos , Ratas Endogámicas F344 , Péptidos beta-Amiloides/metabolismo , Ratas Transgénicas , Receptores de Dopamina D2/metabolismo , Tomografía Computarizada de Emisión de Fotón Único , Microglía/metabolismo
2.
Neuroimage Clin ; 43: 103635, 2024 Jun 24.
Artículo en Inglés | MEDLINE | ID: mdl-38941766

RESUMEN

Advanced age is the most important risk factor for Alzheimer's disease (AD), and carrier-status of the Apolipoprotein E4 (APOE4) allele is the strongest known genetic risk factor. Many studies have consistently shown a link between APOE4 and synaptic dysfunction, possibly reflecting pathologically accelerated biological aging in persons at risk for AD. To test the hypothesis that distinct functional connectivity patterns characterize APOE4 carriers across the clinical spectrum of AD, we investigated 128 resting state functional Magnetic Resonance Imaging (fMRI) datasets from the Alzheimer's Disease Neuroimaging Initiative database (ADNI), representing all disease stages from cognitive normal to clinical dementia. Brain region centralities within functional networks, computed as eigenvector centrality, were tested for multivariate associations with chronological age, APOE4 carrier status and clinical stage (as well as their interactions) by partial least square analysis (PLSC). By PLSC analysis two distinct brain activity patterns could be identified, which reflected interactive effects of age, APOE4 and clinical disease stage. A first component including sensorimotor regions and parietal regions correlated with age and AD clinical stage (p < 0.001). A second component focused on medial-frontal regions and was specifically related to the interaction between age and APOE4 (p = 0.032). Our findings are consistent with earlier reports on altered network connectivity in APOE4 carriers. Results of our study highlight promise of graph-theory based network centrality to identify brain connectivity linked to genetic risk, clinical stage and age. Our data suggest the existence of brain network activity patterns that characterize APOE4 carriers across clinical stages of AD.

3.
Commun Biol ; 7(1): 1169, 2024 Sep 18.
Artículo en Inglés | MEDLINE | ID: mdl-39294332

RESUMEN

Functional connectivity patterns in the human brain, like the friction ridges of a fingerprint, can uniquely identify individuals. Does this "brain fingerprint" remain distinct even during Alzheimer's disease (AD)? Using fMRI data from healthy and pathologically ageing subjects, we find that individual functional connectivity profiles remain unique and highly heterogeneous during mild cognitive impairment and AD. However, the patterns that make individuals identifiable change with disease progression, revealing a reconfiguration of the brain fingerprint. Notably, connectivity shifts towards functional system connections in AD and lower-order cognitive functions in early disease stages. These findings emphasize the importance of focusing on individual variability rather than group differences in AD studies. Individual functional connectomes could be instrumental in creating personalized models of AD progression, predicting disease course, and optimizing treatments, paving the way for personalized medicine in AD management.


Asunto(s)
Enfermedad de Alzheimer , Encéfalo , Conectoma , Imagen por Resonancia Magnética , Enfermedad de Alzheimer/diagnóstico por imagen , Enfermedad de Alzheimer/fisiopatología , Enfermedad de Alzheimer/patología , Humanos , Anciano , Encéfalo/diagnóstico por imagen , Encéfalo/fisiopatología , Encéfalo/patología , Masculino , Femenino , Disfunción Cognitiva/fisiopatología , Disfunción Cognitiva/diagnóstico por imagen , Anciano de 80 o más Años , Progresión de la Enfermedad , Persona de Mediana Edad
4.
Alzheimers Dement (Amst) ; 16(1): e12504, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38213949

RESUMEN

INTRODUCTION: Establishing valid diagnostic strategies is a precondition for successful therapeutic intervention in Alzheimer's disease (AD). METHODS: One hundred forty-four healthy 75-year-old participants from the Vienna-Transdanube-Aging longitudinal cohort study were tested for neuroaxonal damage by single molecular array (Simoa) plasma neurofilament light chain (NfL) levels at baseline, 30, 60, and 90 months, and onset of AD dementia. Individual risk for sporadic AD was estimated by continuous shrinkage polygenic risk score (PRS-CS, genome-wide association study). RESULTS: Nineteen participants developed AD after a median of 60 months (interquartile range 30). In participants with AD, baseline NfL plasma levels correlated with PRS-CS (r = 0.75, p < 0.001; difference to controls: Fisher's r-to-z: z = 3.89, p < 0.001). PRS-CS combined with baseline plasma NfL predicted onset of AD (p < 0.01). DISCUSSION: Our data suggest that polygenic risk for AD and plasma NfL closely interact years before onset of clinical symptoms. Peripheral NfL may serve as a diagnostic measure supporting early therapeutic intervention and secondary prevention in AD.

5.
Neurobiol Aging ; 103: 117-127, 2021 07.
Artículo en Inglés | MEDLINE | ID: mdl-33895629

RESUMEN

Alzheimer's disease (AD) is a neurodegenerative condition affecting memory performance. This pathology is characterized by intracerebral amyloid plaques and tau tangles coupled with neuroinflammation. During the last century, numerous therapeutic trials unfortunately failed highlighting the need to find new therapeutic approaches. Low-dose brain radiotherapy (LD-RT) showed efficacy to reduce amyloid load and inflammation in patients with peripheral diseases. In this study, the therapeutic potential of 2 LD-RT schedules was tested on the TgF344-AD rat model of AD. Fifteen-month-old rats were irradiated with 5 fractions of 2 Gy delivered either daily or weekly. The daily treatment induced an improvement of memory performance in the Y-maze. In contrast, the weekly treatment increased the microglial reactivity in the hippocampus. A lack of effect of both regimens on amyloid pathology was unexpectedly observed. The positive effect on cognition encourages to further evaluate the LD-RT therapeutic potential and highlights the impact of the design choice of the LD-RT regimen.


Asunto(s)
Enfermedad de Alzheimer/psicología , Enfermedad de Alzheimer/radioterapia , Fraccionamiento de la Dosis de Radiación , Memoria , Enfermedad de Alzheimer/patología , Animales , Modelos Animales de Enfermedad , Femenino , Hipocampo/citología , Microglía/fisiología , Enfermedades Neuroinflamatorias , Ratas Endogámicas F344 , Ratas Transgénicas , Resultado del Tratamiento
6.
Genes Brain Behav ; 20(5): e12712, 2021 06.
Artículo en Inglés | MEDLINE | ID: mdl-33150709

RESUMEN

Alzheimer's disease (AD) is characterized by cognitive disorders and alterations of behavioral traits such as anhedonia and anxiety. Contribution of nonphysiological forms of amyloid and tau peptides to the onset of neurological dysfunctions remains unclear because most preclinical models only present one of those pathological AD-related biomarkers. A more recently developed model, the TgF344-AD rat has the advantage of overexpressing amyloid and naturally developing tauopathy, thus making it close to human familial forms of AD. We showed the presence of a learning dysfunction in a reference memory test, without spatial working memory impairment but with an increase in anxiety levels and a decrease in motivation to participate in the test. In the sucrose preference test, TgF344-AD rats did not show signs of anhedonia but did not increase the volume of liquid consumed when the water was replaced by sucrose solution. These behavioral phenomena were observed at an age when tau accumulation are absent, and where amyloid deposits are predominant in the hippocampus and the entorhinal cortex. Within the hippocampus itself, amyloid accumulation is heterogenous between the subiculum, the dorsal hippocampus and the ventral hippocampus. Thus, our data demonstrated heterogeneity in the appearance of various behavioral and neurochemical markers in the TgF344-AD rat. This multivariate analysis will therefore make it possible to define the stage of the pathology, to measure its evolution and the effects of future therapeutic treatments.


Asunto(s)
Enfermedad de Alzheimer/fisiopatología , Aprendizaje por Laberinto , Memoria a Corto Plazo , Enfermedad de Alzheimer/genética , Animales , Corteza Entorrinal/fisiopatología , Femenino , Hipocampo/fisiopatología , Masculino , Ratas , Ratas Endogámicas F344 , Proteínas tau/genética , Proteínas tau/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA