Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
1.
Circ Res ; 123(11): 1232-1243, 2018 11 09.
Artículo en Inglés | MEDLINE | ID: mdl-30571462

RESUMEN

RATIONALE: Protein S-nitros(yl)ation (SNO) has been implicated as an essential mediator of nitric oxide-dependent cardioprotection. Compared with males, female hearts exhibit higher baseline levels of protein SNO and associated with this, reduced susceptibility to myocardial ischemia-reperfusion injury. Female hearts also exhibit enhanced S-nitrosoglutathione reductase (GSNO-R) activity, which would typically favor decreased SNO levels as GSNO-R mediates SNO catabolism. OBJECTIVE: Because female hearts exhibit higher SNO levels, we hypothesized that GSNO-R is an essential component of sex-dependent cardioprotection in females. METHODS AND RESULTS: Male and female wild-type mouse hearts were subjected to ex vivo ischemia-reperfusion injury with or without GSNO-R inhibition (N6022). Control female hearts exhibited enhanced functional recovery and decreased infarct size versus control males. Interestingly, GSNO-R inhibition reversed this sex disparity, significantly reducing injury in male hearts, and exacerbating injury in females. Similar results were obtained with male and female GSNO-R-/- hearts using ex vivo and in vivo models of ischemia-reperfusion injury. Assessment of SNO levels using SNO-resin assisted capture revealed an increase in total SNO levels with GSNO-R inhibition in males, whereas total SNO levels remained unchanged in females. However, we found that although GSNO-R inhibition significantly increased SNO at the cardioprotective Cys39 residue of nicotinamide adenine dinucleotide (NADH) dehydrogenase subunit 3 in males, SNO-NADH dehydrogenase subunit 3 levels were surprisingly reduced in N6022-treated female hearts. Because GSNO-R also acts as a formaldehyde dehydrogenase, we examined postischemic formaldehyde levels and found that they were nearly 2-fold higher in N6022-treated female hearts compared with nontreated hearts. Importantly, the mitochondrial aldehyde dehydrogenase 2 activator, Alda-1, rescued the phenotype in GSNO-R-/- female hearts, significantly reducing infarct size. CONCLUSIONS: These striking findings point to GSNO-R as a critical sex-dependent mediator of myocardial protein SNO and formaldehyde levels and further suggest that different therapeutic strategies may be required to combat ischemic heart disease in males and females.


Asunto(s)
Alcohol Deshidrogenasa/metabolismo , Corazón/efectos de los fármacos , Daño por Reperfusión Miocárdica/metabolismo , Alcohol Deshidrogenasa/antagonistas & inhibidores , Animales , Benzamidas/farmacología , Benzamidas/uso terapéutico , Cardiotónicos/farmacología , Cardiotónicos/uso terapéutico , Inhibidores Enzimáticos/farmacología , Inhibidores Enzimáticos/uso terapéutico , Femenino , Masculino , Ratones , Ratones Endogámicos C57BL , Daño por Reperfusión Miocárdica/tratamiento farmacológico , Miocardio/metabolismo , Estrés Oxidativo , Pirroles/farmacología , Pirroles/uso terapéutico , Factores Sexuales
2.
Am J Respir Cell Mol Biol ; 54(4): 504-14, 2016 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-26390063

RESUMEN

Cigarette smoke (CS) exposure is the leading cause of emphysema. CS mediates pathologic emphysematous remodeling of the lung via apoptosis of lung parenchymal cells resulting in enlargement of the airspaces, loss of the capillary bed, and diminished surface area for gas exchange. Macrophage migration inhibitory factor (MIF), a pleiotropic cytokine, is reduced both in a preclinical model of CS-induced emphysema and in patients with chronic obstructive pulmonary disease, particularly those with the most severe disease and emphysematous phenotype. MIF functions to antagonize CS-induced DNA damage, p53-dependent apoptosis of pulmonary endothelial cells (EndoCs) and resultant emphysematous tissue remodeling. Using primary alveolar EndoCs and a mouse model of CS-induced lung damage, we investigated the capacity and molecular mechanism(s) by which MIF modifies oxidant injury. Here, we demonstrate that both the activity of xanthine oxidoreductase (XOR), a superoxide-generating enzyme obligatory for CS-induced DNA damage and EndoC apoptosis, and superoxide concentrations are increased after CS exposure in the absence of MIF. Both XOR hyperactivation and apoptosis in the absence of MIF occurred via a p38 mitogen-activated protein kinase-dependent mechanism. Furthermore, a mitogen-activated protein kinase kinase kinase family member, apoptosis signal-regulating kinase 1 (ASK1), was necessary for CS-induced p38 activation and EndoC apoptosis. MIF was sufficient to directly suppress ASK1 enzymatic activity. Taken together, MIF suppresses CS-mediated cytotoxicity in the lung, in part by antagonizing ASK1-p38-XOR-dependent apoptosis.


Asunto(s)
Apoptosis , MAP Quinasa Quinasa Quinasa 5/metabolismo , Factores Inhibidores de la Migración de Macrófagos/fisiología , Humo , Xantina Deshidrogenasa/metabolismo , Proteínas Quinasas p38 Activadas por Mitógenos/metabolismo , Animales , Células Cultivadas , Activación Enzimática , Humanos , Factores Inhibidores de la Migración de Macrófagos/genética , Ratones , Ratones Endogámicos C57BL , Ratas , Especies Reactivas de Oxígeno/metabolismo , Nicotiana
3.
Am J Physiol Heart Circ Physiol ; 310(4): H505-15, 2016 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-26702143

RESUMEN

Premenopausal women exhibit endogenous cardioprotective signaling mechanisms that are thought to result from the beneficial effects of estrogen, which we have shown to increase protein S-nitrosylation in the heart. S-nitrosylation is a labile protein modification that increases with a number of different forms of cardioprotection, including ischemic preconditioning. Herein, we sought to identify a potential role for protein S-nitrosylation in sex-dependent cardioprotection. We utilized a Langendorff-perfused mouse heart model of ischemia-reperfusion injury with male and female hearts, and S-nitrosylation-resin-assisted capture with liquid chromatography tandem mass spectrometry to identify S-nitrosylated proteins and modification sites. Consistent with previous studies, female hearts exhibited resilience to injury with a significant increase in functional recovery compared with male hearts. In a separate set of hearts, we identified a total of 177 S-nitrosylated proteins in female hearts at baseline compared with 109 S-nitrosylated proteins in male hearts. Unique S-nitrosylated proteins in the female group included the F1FO-ATPase and cyclophilin D. We also utilized label-free peptide analysis to quantify levels of common S-nitrosylated identifications and noted that the S-nitrosylation of sarcoplasmic/endoplasmic reticulum Ca(2+)-ATPase 2a was nearly 70% lower in male hearts compared with female, with no difference in expression. Furthermore, we found a significant increase in endothelial nitric oxide synthase expression, phosphorylation, and total nitric oxide production in female hearts compared with males, likely accounting for the enhanced S-nitrosylation protein levels in female hearts. In conclusion, we identified a number of novel S-nitrosylated proteins in female hearts that are likely to contribute to sex-dependent cardioprotection.


Asunto(s)
Circulación Coronaria/efectos de los fármacos , Corazón/efectos de los fármacos , Proteoma/efectos de los fármacos , S-Nitrosotioles/metabolismo , Animales , Peptidil-Prolil Isomerasa F , Ciclofilinas/metabolismo , Retículo Endoplásmico/metabolismo , Femenino , Masculino , Ratones , Ratones Endogámicos C57BL , Daño por Reperfusión Miocárdica/metabolismo , Miocardio/metabolismo , Óxido Nítrico/biosíntesis , Óxido Nítrico Sintasa de Tipo III/biosíntesis , Fosforilación , Caracteres Sexuales
4.
Am J Respir Cell Mol Biol ; 50(3): 538-48, 2014 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-24102120

RESUMEN

Approximately 3 billion people-half the worldwide population-are exposed to extremely high concentrations of household air pollution due to the burning of biomass fuels on inefficient cookstoves, accounting for 4 million annual deaths globally. Yet, our understanding of the pulmonary responses to household air pollution exposure and the underlying molecular and cellular events is limited. The two most prevalent biomass fuels in India are wood and cow dung, and typical 24-hour mean particulate matter (PM) concentrations in homes that use these fuels are 300 to 5,000 µg/m(3). We dissected the mechanisms of pulmonary responses in mice after acute or subchronic exposure to wood or cow dung PM collected from rural Indian homes during biomass cooking. Acute exposures resulted in robust proinflammatory cytokine production, neutrophilic inflammation, airway resistance, and hyperresponsiveness, all of which were significantly higher in mice exposed to PM from cow dung. On the contrary, subchronic exposures induced eosinophilic inflammation, PM-specific antibody responses, and alveolar destruction that was highest in wood PM-exposed mice. To understand the molecular pathways that trigger biomass PM-induced inflammation, we exposed Toll-like receptor (TLR)2-, TLR3-, TLR4-, TLR5-, and IL-1R-deficient mice to PM and found that IL-1R, TLR4, and TLR2 are the predominant receptors that elicit inflammatory responses via MyD88 in mice exposed to wood or cow dung PM. In conclusion, this study demonstrates that subchronic exposure to PM collected from households burning biomass fuel elicits a persistent pulmonary inflammation largely through activation of TLR and IL-1R pathways, which could increase the risk for chronic respiratory diseases.


Asunto(s)
Contaminantes Atmosféricos/efectos adversos , Biomasa , Culinaria , Fuentes Generadoras de Energía , Heces , Vivienda , Pulmón/efectos de los fármacos , Neumonía/inducido químicamente , Madera/efectos adversos , Resistencia de las Vías Respiratorias/efectos de los fármacos , Animales , Hiperreactividad Bronquial/inducido químicamente , Hiperreactividad Bronquial/inmunología , Hiperreactividad Bronquial/fisiopatología , Citocinas/metabolismo , Relación Dosis-Respuesta a Droga , Mediadores de Inflamación/metabolismo , Exposición por Inhalación/efectos adversos , Pulmón/inmunología , Pulmón/fisiopatología , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Factor 88 de Diferenciación Mieloide/metabolismo , Neutrófilos/efectos de los fármacos , Neutrófilos/inmunología , Neumonía/inmunología , Neumonía/fisiopatología , Receptores Tipo I de Interleucina-1/deficiencia , Receptores Tipo I de Interleucina-1/genética , Factores de Tiempo , Receptor Toll-Like 2/deficiencia , Receptor Toll-Like 2/genética , Receptor Toll-Like 4/deficiencia , Receptor Toll-Like 4/genética
5.
Am J Respir Cell Mol Biol ; 51(1): 94-103, 2014 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-24490973

RESUMEN

Cigarette smoke (CS) is the most common cause of chronic obstructive pulmonary diseases (COPD), including emphysema. CS exposure impacts all cell types within the airways and lung parenchyma, causing alveolar tissue destruction through four mechanisms: (1) oxidative stress; (2) inflammation; (3) protease-induced degradation of the extracellular matrix; and (4) enhanced alveolar epithelial and endothelial cell (EC) apoptosis. Studies in human pulmonary ECs demonstrate that macrophage migration inhibitory factor (MIF) antagonizes CS-induced apoptosis. Here, we used human microvascular ECs, an animal model of emphysema (mice challenged with chronic CS), and patient serum samples to address both the capacity of CS to alter MIF expression and the effects of MIF on disease severity. We demonstrate significantly reduced serum MIF levels in patients with COPD. In the murine model, chronic CS exposure resulted in decreased MIF mRNA and protein expression in the intact lung. MIF deficiency (Mif(-/-)) potentiated the toxicity of CS exposure in vivo via increased apoptosis of ECs, resulting in enhanced CS-induced tissue remodeling. This was linked to MIF's capacity to protect against double-stranded DNA damage and suppress p53 expression. Taken together, MIF appears to antagonize CS-induced toxicity in the lung and resultant emphysematous tissue remodeling by suppressing EC DNA damage and controlling p53-mediated apoptosis, highlighting a critical role of MIF in EC homeostasis within the lung.


Asunto(s)
Daño del ADN/efectos de los fármacos , Oxidorreductasas Intramoleculares/fisiología , Pulmón/patología , Factores Inhibidores de la Migración de Macrófagos/fisiología , Enfermedad Pulmonar Obstructiva Crónica/etiología , Enfisema Pulmonar/etiología , Humo/efectos adversos , Animales , Apoptosis/efectos de los fármacos , Western Blotting , Células Endoteliales/efectos de los fármacos , Células Endoteliales/patología , Humanos , Técnicas para Inmunoenzimas , Inflamación/etiología , Inflamación/metabolismo , Inflamación/patología , Pulmón/efectos de los fármacos , Pulmón/metabolismo , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Estrés Oxidativo , Enfermedad Pulmonar Obstructiva Crónica/metabolismo , Enfermedad Pulmonar Obstructiva Crónica/patología , Enfisema Pulmonar/metabolismo , Enfisema Pulmonar/patología , Proteína p53 Supresora de Tumor/metabolismo
6.
Ann Biomed Eng ; 51(4): 741-750, 2023 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-36138177

RESUMEN

Respiratory tract dosimetry predictions for inhalation of tobacco product smoke and aerosols are sensitive to the values of the physicochemical properties of constituents that make up the puff. Physicochemical property values may change significantly with temperature, particularly in the oral cavity and upper airways of the lung, where the puff undergoes adjustments from high temperatures in the tobacco product to reach body temperature. The assumption of fixed property values may introduce uncertainties in the predicted doses in these and other airways of the lung. To obtain a bound for the uncertainties and improve dose predictions, we studied temperature evolution of the inhaled puff in the human respiratory tract during different puff inhalation events. Energy equations were developed for the transport of the puff in the respiratory tract and were solved to find air and droplet temperatures throughout the respiratory tract during two puffing scenarios: 1. direct inhalation of the puff into the lung with no pause in the oral cavity, and 2. puff withdrawal, mouth hold, and puff delivery to the lung via inhalation of dilution air. These puffing scenarios correspond to the majority of smoking scenarios. Model predictions showed that temperature effects were most significant during puff withdrawal. Otherwise, the puff reached thermal equilibrium with the body. Findings from this study will improve predictions of deposition and uptake of puff constituents, and therefore inform inhalation risk assessment from use of electronic nicotine delivery systems (ENDS) and combusted cigarettes.


Asunto(s)
Nicotiana , Productos de Tabaco , Humanos , Nicotina , Temperatura , Humo/análisis , Pulmón
7.
J Vis Exp ; (95): 52376, 2015 Jan 27.
Artículo en Inglés | MEDLINE | ID: mdl-25651276

RESUMEN

In recent decades the mouse has become the primary animal model of a variety of lung diseases. In models of emphysema or fibrosis, the essential phenotypic changes are best assessed by measurement of the changes in lung elasticity. To best understand specific mechanisms underlying such pathologies in mice, it is essential to make functional measurements that can reflect the developing pathology. Although there are many ways to measure elasticity, the classical method is that of the total lung pressure-volume (PV) curve done over the whole range of lung volumes. This measurement has been made on adult lungs from nearly all mammalian species dating back almost 100 years, and such PV curves also played a major role in the discovery and understanding of the function of pulmonary surfactant in fetal lung development. Unfortunately, such total PV curves have not been widely reported in the mouse, despite the fact that they can provide useful information on the macroscopic effects of structural changes in the lung. Although partial PV curves measuring just the changes in lung volume are sometimes reported, without a measure of absolute volume, the nonlinear nature of the total PV curve makes these partial ones very difficult to interpret. In the present study, we describe a standardized way to measure the total PV curve. We have then tested the ability of these curves to detect changes in mouse lung structure in two common lung pathologies, emphysema and fibrosis. Results showed significant changes in several variables consistent with expected structural changes with these pathologies. This measurement of the lung PV curve in mice thus provides a straightforward means to monitor the progression of the pathophysiologic changes over time and the potential effect of therapeutic procedures.


Asunto(s)
Enfermedades Pulmonares/fisiopatología , Mediciones del Volumen Pulmonar/métodos , Pulmón/fisiología , Animales , Modelos Animales de Enfermedad , Enfisema/diagnóstico , Enfisema/fisiopatología , Femenino , Enfermedades Pulmonares/diagnóstico , Masculino , Ratones , Fibrosis Pulmonar/diagnóstico , Fibrosis Pulmonar/fisiopatología , Porcinos
8.
J Vis Exp ; (95): e52216, 2015 Jan 06.
Artículo en Inglés | MEDLINE | ID: mdl-25590416

RESUMEN

The mouse is now the primary animal used to model a variety of lung diseases. To study the mechanisms that underlie such pathologies, phenotypic methods are needed that can quantify the pathologic changes. Furthermore, to provide translational relevance to the mouse models, such measurements should be tests that can easily be done in both humans and mice. Unfortunately, in the present literature few phenotypic measurements of lung function have direct application to humans. One exception is the diffusing capacity for carbon monoxide, which is a measurement that is routinely done in humans. In the present report, we describe a means to quickly and simply measure this diffusing capacity in mice. The procedure involves brief lung inflation with tracer gases in an anesthetized mouse, followed by a 1 min gas analysis time. We have tested the ability of this method to detect several lung pathologies, including emphysema, fibrosis, acute lung injury, and influenza and fungal lung infections, as well as monitoring lung maturation in young pups. Results show significant decreases in all the lung pathologies, as well as an increase in the diffusing capacity with lung maturation. This measurement of lung diffusing capacity thus provides a pulmonary function test that has broad application with its ability to detect phenotypic structural changes with most of the existing pathologic lung models.


Asunto(s)
Enfermedades Pulmonares/diagnóstico , Enfermedades Pulmonares/fisiopatología , Capacidad de Difusión Pulmonar , Pruebas de Función Respiratoria/métodos , Animales , Femenino , Masculino , Ratones , Ratones Endogámicos C57BL , Fenotipo
9.
PLoS One ; 10(4): e0124189, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-25831123

RESUMEN

BACKGROUND: Xanthine oxidoreductase (XOR) is involved in oxidative metabolism of purines and is a source of reactive oxygen species (ROS). As such, XOR has been implicated in oxidant-mediated injury in multiple cardiopulmonary diseases. XOR enzyme activity is regulated, in part, via a phosphorylation-dependent, post-translational mechanism, although the kinase(s) responsible for such hyperactivation are unknown. METHODS AND RESULTS: Using an in silico approach, we identified a cyclin-dependent kinase 5 (CDK5) consensus motif adjacent to the XOR flavin adenine dinucleotide (FAD) binding domain. CDK5 is a proline-directed serine/threonine kinase historically linked to neural development and injury. We tested the hypothesis that CDK5 and its activators are mediators of hypoxia-induced hyperactivation of XOR in pulmonary microvascular endothelial cells (EC) and the intact murine lung. Using complementary molecular and pharmacologic approaches, we demonstrated that hypoxia significantly increased CDK5 activity in EC. This was coincident with increased expression of the CDK5 activators, cyclin-dependent kinase 5 activator 1 (CDK5r1 or p35/p25), and decreased expression of the CDK5 inhibitory peptide, p10. Expression of p35/p25 was necessary for XOR hyperactivation. Further, CDK5 physically associated with XOR and was necessary and sufficient for XOR phosphorylation and hyperactivation both in vitro and in vivo. XOR hyperactivation required the target threonine (T222) within the CDK5-consensus motif. CONCLUSIONS AND SIGNIFICANCE: These results indicate that p35/CDK5-mediated phosphorylation of T222 is required for hypoxia-induced XOR hyperactivation in the lung. Recognizing the contribution of XOR to oxidative injury in cardiopulmonary disease, these observations identify p35/CDK5 as novel regulators of XOR and potential modifiers of ROS-mediated injury.


Asunto(s)
Hipoxia de la Célula/fisiología , Quinasa 5 Dependiente de la Ciclina/metabolismo , Fosfotransferasas/metabolismo , Xantina Deshidrogenasa/metabolismo , Animales , Línea Celular , Quinasa 5 Dependiente de la Ciclina/genética , Flavina-Adenina Dinucleótido/metabolismo , Pulmón/metabolismo , Fosfotransferasas/genética , Estructura Terciaria de Proteína , Interferencia de ARN , ARN Interferente Pequeño , Ratas , Especies Reactivas de Oxígeno/metabolismo
10.
Ann Biomed Eng ; 36(12): 2111-20, 2008 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-18633711

RESUMEN

Lung parenchyma is normally considered to be isotropic, that is, its properties do not depend upon specific preferential directions. The assumption of isotropy is important for both modeling of lung mechanical properties and quantitative histologic measurements. This assumption, however, has not been previously examined at the microscopic level, in part because of the difficulty in large lungs of obtaining sufficient numbers of small samples of tissue while maintaining the spatial orientation. In the mouse, however, this difficulty is minimized. We evaluated the parenchymal isotropy in mouse lungs by quantifying the mean airspace chord lengths (Lm) from high-resolution histology of complete sections surrounded by an intact continuous visceral pleural membrane. We partitioned this lung into 5 isolated regions, defined by the distance from the visceral pleura. To further evaluate the isotropy, we also measured Lm in two orthogonal spatial directions with respect to the section orientation, and varied the sample line spacing from 3 to 280 microm. Results show a striking degree of parenchymal anisotropy in normal mouse lungs. The Lm was significantly greater when grid lines were parallel to the ventral-dorsal axis of the tissue. In addition the Lm was significantly smaller within 300 microm of the visceral pleura. Whether this anisotropy results from intrinsic structural factors or from nonuniform shrinkage during conventional tissue processing is uncertain, but it should be considered when interpreting quantitative morphometric measurements made in the mouse lung.


Asunto(s)
Pulmón/fisiología , Animales , Anisotropía , Inmunohistoquímica , Indicadores y Reactivos/metabolismo , Pulmón/anatomía & histología , Mediciones del Volumen Pulmonar/métodos , Masculino , Ratones , Ratones Endogámicos C57BL , Colorantes de Rosanilina/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA