Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 57
Filtrar
Más filtros

País/Región como asunto
País de afiliación
Intervalo de año de publicación
1.
Small ; 20(11): e2305688, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-37922529

RESUMEN

Developing a facile strategy for constructing oriented mixed matrix membranes (MMMs) with uniformly dispersed and high-loading metal-organic frameworks (MOFs) is a crucial scientific challenge in probing the enhanced capability and potential applications of MOF-polymer MMMs. Herein, a novel synchronous synthetic method for constructing oriented CuBDC/poly(m-phenylenediamine) (CuBDC/PmPD) MMM with uniform MOF dispersion at high loading at the air-solution interface via the dual function of metal ions is reported. The resulting MMM exhibits excellent separation performance in ion sieving and seawater desalination due to the structural integrity of the proposed membrane and the highly interconnected channels created through the oriented distribution of MOF in a polymer matrix. Such a cutting-edge approach may provide promising insights into the development of advanced MMMs with optimized structure and superior performances.

2.
Phys Chem Chem Phys ; 26(2): 1113-1124, 2024 Jan 03.
Artículo en Inglés | MEDLINE | ID: mdl-38098463

RESUMEN

A new type of adsorbent, a Prussian blue analog-based copper-aluminum layered double hydroxide (PBA@CuAl-LDH), was successfully synthesized using a one-step method for the removal of radioactive Cs+ from wastewater. The adsorption performance, characteristics and the underlying adsorption mechanism of PBA@CuAl-LDH were systematically examined. The results showed that PBA@CuAl-LDH exhibited excellent adsorption performance, with a maximum adsorption capacity of 109.2 mg g-1. Over 85% of PBA@CuAl-LDH can be recycled, and the material exhibited only a 6.6% loss in adsorption performance. The adsorption process was well-fitted using the pseudo-second-order kinetic model and the Freundlich isotherm model, revealing the surface heterogeneity of the composite adsorbent. A molecular model of PBA@CuAl-LDH was constructed by combining density functional theory and multiple instrumental characterization techniques. Our results indicate that PBA crystals can be generated between layers and on the surface. Ion exchange was revealed as the main adsorption mechanism of Cs+ by PBA@CuAl-LDH. Specifically, the interstitial spaces of the PBA crystals generated between the layers and on the surface played an important role in ion exchange. These findings provide concrete theoretical support for radioactive pollution control and have significant value in directing the fabrication of cesium removal materials and their future engineering application.

3.
Inorg Chem ; 62(23): 9019-9024, 2023 Jun 12.
Artículo en Inglés | MEDLINE | ID: mdl-37246909

RESUMEN

The fabrication of one-dimensional hollow metal-organic frameworks (1D HMOFs) has attracted considerable attention for the catalysis and separation because of their large surface areas and short and continuous axial diffusion pathways. However, the fabrication of 1D HMOFs requires the use of a sacrificial template and multiple steps, limiting their potential applications. This study proposes a novel Marangoni-assisted method to synthesize 1D HMOFs. Using this method, the MOF crystals can undergo heterogeneous nucleation and growth, affording a morphology self-regulation process under kinetic control and forming tubular 1D HMOFs in one step without requiring additional treatment. This method is expected to open new avenues for synthesizing 1D HMOFs.

4.
Inorg Chem ; 62(43): 17783-17790, 2023 Oct 30.
Artículo en Inglés | MEDLINE | ID: mdl-37844277

RESUMEN

Coordination polymers are among the most favored active materials by researchers due to their broad application prospects. However, most of them are usually difficult to directly process into applicable devices because of their unsatisfied processability. One process of great concern for researchers is the in situ preparation of the coordination polymer on the applicable substrate, especially for the favored network substrates with good mechanical properties and 3D porous structure, which could provide obvious convenience and facilitation in the application process. Herein, we present an ultrafast and scalable thermal current-induced dewetting strategy to obtain uniform coordination polymer film in situ on network substrates, which could enable unprecedented convenience to obtain directly usable coordination polymer composites such as practical catalytic electrodes with excellent electrocatalytic performance. The proposed thermal current-induced dewetting method provides a highly adaptable and efficient practical production approach to integrate coordination polymer materials with network substrates and also provides new inspiration for understanding and applying the dewetting process on complex 3D network substrates.

5.
Inorg Chem ; 62(27): 10694-10703, 2023 Jul 10.
Artículo en Inglés | MEDLINE | ID: mdl-37357742

RESUMEN

Due to the strong oxidizability of H2O2, rapid, accurate, sensitive, and stable sensors of hydrogen peroxide (H2O2) have attracted wide attention in the chemical industry, food, medicine, household detergents, and environmental monitoring fields. Here, a high-performance H2O2 electrochemical sensing platform is proposed based on an Au nanoparticles@UiO-66 film coated on a carbon cloth (CC) electrode (Au NPs@UiO-66/CC electrode). The Au NPs@UiO-66/CC electrode was prepared through solvothermal growth of a UiO-66 film on a functionalized three-dimensional CC electrode, followed by in situ deposition of Au NPs into the UiO-66 film under a periodic galvanostatic pulse current. The in situ preparation strategy greatly improves the electrical interaction between Au NPs@UiO-66 and the CC substrate without sacrificing the electrochemical activity of the Au NPs@UiO-66/CC electrode. Meanwhile, thanks to the high specific surface area of the three-dimensional Au NPs@UiO-66/CC electrode, the optimized Au NPs@UiO-66/CC electrode illustrates excellent electrochemical detection capability for H2O2 with an extensive linear range (0.1-21 mM), high sensitivity (1048.01 µA mM-1 cm-2), and lower limit of detection [0.033 µM (S/N = 3)] and limit of quantification [0.109 µM (S/N = 3)]. At the same time, the encapsulated structure of Au NPs in the UiO-66 film also endows the composite electrode with specific sensing performance owing to the regular opening channels of the UiO-66 films that prevent large-size interferents from reacting to the electrochemically active Au NPs. Together with all these advantages, the proposed sensing platform would exhibit great potential for electrochemical sensors and bioelectronics.

6.
Environ Sci Technol ; 57(37): 13887-13900, 2023 09 19.
Artículo en Inglés | MEDLINE | ID: mdl-37667485

RESUMEN

In this study, sequencing batch operation was successfully combined with a pilot-scale anaerobic biofilm-modified anaerobic/aerobic membrane bioreactor to achieve anaerobic ammonium oxidation (anammox) without inoculation of anammox aggregates for municipal wastewater treatment. Both total nitrogen and phosphorus removal efficiencies of the reactor reached up to 80% in the 250-day operation, with effluent concentrations of 4.95 mg-N/L and 0.48 mg-P/L. In situ enrichment of anammox bacteria with a maximum relative abundance of 7.86% was observed in the anaerobic biofilm, contributing to 18.81% of nitrogen removal, with denitrification being the primary removal pathway (38.41%). Denitrifying phosphorus removal (DPR) (40.54%) and aerobic phosphorus uptake (48.40%) played comparable roles in phosphorus removal. Metagenomic sequencing results showed that the biofilm contained significantly lower abundances of NO-reducing functional genes than the bulk sludge (p < 0.01), favoring anammox catabolism in the former. Interactions between the anammox bacteria and flanking community were dominated by cooperation behaviors (e.g., nitrite supply, amino acids/vitamins exchange) in the anaerobic biofilm community network. Moreover, the hydrolytic/fermentative bacteria and endogenous heterotrophic bacteria (Dechloromonas, Candidatus competibacter) were substantially enriched under sequencing batch operation, which could alleviate the inhibition of anammox bacteria by complex organics. Overall, this study provides a feasible and promising strategy for substantially enriching anammox bacteria and achieving partial mainstream anammox as well as DPR.


Asunto(s)
Oxidación Anaeróbica del Amoníaco , Biopelículas , Transporte Biológico , Reactores Biológicos , Fermentación
7.
Environ Res ; 212(Pt E): 113618, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-35671800

RESUMEN

Bacteria, archaea and fungi usually coexist in various soil habitats and play important roles in biogeochemical cycle and remediation of contamination. Despite their significance, their combined bioassembly pattern, ecological interactions and driving factors in contaminated soils still remain obscure. To fill the gap, a systemic investigation on the characteristics of microbial community including bacteria, archaea and fungi, assembly patterns and environmental driving factors was conducted in an abandoned gas station soils which were contaminated by polycyclic aromatic compounds and potentially toxic elements for decades. The results showed that the soils were contaminated excessively by benzo[a]pyrene (0.46-2.00 mg/kg) and Dibenz[a,h]anthracene (0.37-1.30 mg/kg). Multitudinous contaminant-degrading/resistant microorganisms and unigenes were detected, indicating potential of the soils to mitigate the pollution. Compared with fungi and archaea, the bacteria had higher community diversity and were more responsive to seasonal shifts. Functional genes (nidB, nahAb, nahAa, adhP, adh, adhC, etc.) involved in biodegradation were highly enriched in summer (1.96% vs 1.80%). The co-occurrence network analysis showed summer communities exhibit a more robust network structure and positive interactions than winter communities. The fungi Neocucurbitaria, Penicillium, Fusarium, Chrysosporium, Knufia, Filobasidium, Wallemia and Rhodotorula were identified as the keystone taxa, indicating that fungi also had important positions in the interdomain molecular ecological networks of both seasons. The network topological properties and |ßNTI| (66.7%-93.3% greater than 2) results indicated the deterministic assembly processes of the microbial communities in the contaminated soil. Acenaphthylene, benzo[b]fluoranthene, indeno[1,2,3-cd]perylene, benzo[g,h,i]pyrene and 9-fluorenone were the key environmental factors driving the deterministic assembly processes of the interdomain microbial community in the contaminated soil. These findings extended our knowledge of interdomain microbial community assembly mechanisms and ecological patterns in natural attenuation and provide valuable guidance in associated bioremediation strategies.


Asunto(s)
Microbiota , Hidrocarburos Policíclicos Aromáticos , Compuestos Policíclicos , Contaminantes del Suelo , Bacterias , Biodegradación Ambiental , Hongos , Hidrocarburos Policíclicos Aromáticos/metabolismo , Suelo/química , Microbiología del Suelo , Contaminantes del Suelo/análisis
8.
Environ Res ; 212(Pt A): 113191, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-35351456

RESUMEN

Soil polycyclic aromatic compound (PAC) pollution as a result of petroleum exploitation has caused serious environmental problems. The unclear assembly and functional patterns of microorganisms in oilfield soils limits the understanding of microbial mechanisms for PAC elimination and health risk reduction. This study investigated the polycyclic aromatic hydrocarbons (PAHs) and substituted PAHs (SPAHs) occurrence, and their impact on the bacteria-archaea-fungi community diversity, co-occurrence network and functionality in the soil of an abandoned oilfield. The results showed that the PAC content in the oilfield ranged from 3429.03 µg kg-1 to 6070.89 µg kg-1, and risk assessment results suggested a potential cancer risk to children and adults. High molecular weight PAHs (98.9%) and SPAHs (1.0%) contributed to 99.9% of the toxic equivalent concentration. For microbial analysis, the abundantly detected degraders and unigenes indicated the microbial potential to mitigate pollutants and reduce health risks. Microbial abundance and diversity were found to be negatively correlated with health risk. The co-occurrence network analysis revealed nonrandom assembly patterns of the interdomain microbial communities, and species in the network exhibited strong positive connections (59%). The network demonstrated strong ecological linkages and was divided into five smaller coherent modules, in which the functional microbes were mainly involved in organic substance and mineral component degradation, biological electron transfer and nutrient cycle processes. The keystone species for maintaining microbial ecological functions included Marinobacter of bacteria and Neocosmospora of fungi. Additionally, benzo [g,h,i]pyrene, dibenz [a,h]anthracene, indeno [1,2,3-cd]perylene and total phosphorus were the key environmental factors driving the assembly and functional patterns of microbial communities under pollution stress. This work improves the knowledge of the functional pattern and environmental adaptation mechanisms of interdomain microbes, and provides valuable guidance for the further bioremediation of PAC-contaminated soils in oilfields.


Asunto(s)
Microbiota , Hidrocarburos Policíclicos Aromáticos , Compuestos Policíclicos , Contaminantes del Suelo , Bacterias/metabolismo , Biodegradación Ambiental , Niño , Humanos , Yacimiento de Petróleo y Gas , Hidrocarburos Policíclicos Aromáticos/metabolismo , Suelo , Microbiología del Suelo , Contaminantes del Suelo/análisis
9.
Environ Res ; 215(Pt 3): 114380, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-36162468

RESUMEN

Estimation of large-scale and high-precision water quality parameters is critical in explaining the spatiotemporal dynamics and the driving factors of water quality variability, especially in areas with environmental complexity (e.g., crisscrossing waterways, high flood risk in rainy season and seawater invasion). Thus, in this study, a retrieval algorithm was developed to predict chlorophyll-a (Chl-a), total nitrogen (TN) and total phosphorus (TP) concentrations in the Pearl River Estuary (PRE) based on a large amount of in situ measurements and Landsat 8 remote sensing images. Random Forest (RF) machine learning was conducted to identify the relationship between environmental indicators (pH, turbidity, conductivity, total dissolved solids and water temperature), Chl-a, TN and TP. The results showed that the NIR/R Binomial algorithm for Chl-a estimation presented appreciable reliability with R2 of 0.7429, root mean square error (RMSE) of 1.2089 and mean absolute percent error (MAPE) of 15.33%. The water quality variation in the PRE showed a characteristic of overall improvement and regional deterioration with average concentrations of 7.28 µg/L, 1.15 mg/L and 0.12 mg/L for Chl-a, TN, and TP respectively. Turbidity and pH were identified as the most important indicators to explain Chl-a (52.86%, 39.91%), TN (52.38%, 40.57%) and TP (55.23%, 40.03%) variation. Agricultural pollution was the main pollution source due to the intensive application of fertilizer and increased field size. Besides, land use patterns (e.g., increasing farmland but decreasing forest) greatly influenced water quality from 2010 to 2020. Moreover, light limitation caused by high turbidity reduced the algae productivity and further lowered the Chl-a concentration. The driving factors for regional water quality variations were anthropologically dominated and supplemented by climate change. This study improved the monitoring accuracy of regional water environment and provided quantitative early warning of water pollution events for environmental practitioners, so as to achieve long-term monitoring, precise pollution management and efficient water resources management.


Asunto(s)
Fósforo , Ríos , Algoritmos , China , Clorofila/análisis , Clorofila A , Monitoreo del Ambiente , Estuarios , Eutrofización , Fertilizantes , Lagos , Nitrógeno/análisis , Fósforo/análisis , Reproducibilidad de los Resultados
10.
Nanotechnology ; 32(41)2021 Jul 22.
Artículo en Inglés | MEDLINE | ID: mdl-34233312

RESUMEN

For decades, lab-on-fiber (LOF) sensing systems have become an emerging optical sensing platform due to the features of small size and light weight. Herein, a simple and efficientin situconstruction strategy was reported for the preparation of LOF sensing platform based on the integration of responsive Fabry-Perot optical resonance cavity on optical fibers. The responsive Fabry-Perot optical resonance cavity with thermal poly(N-isopropylacrylamide) polymer brush layer sandwiched by two silver layers was constructed on the end surface of the optical fiber through combiningin situsurface-initiated polymerization and metal film deposition techniques. Owing to the thermo-responsiveness of the intermediate layer, the as-prepared LOF sensing system shows a sensitive response towards the environmental temperature. Importantly, the as-prepared LOF sensing system also possesses excellent repeatability and rapid response rate. Together with the features of high sensitivity, excellent repeatability and rapid response rate, we believe such LOF sensing system will provide a foundation for the future applications of medical diagnosis,in vivodetection and public security.

11.
Environ Sci Technol ; 55(9): 6270-6280, 2021 05 04.
Artículo en Inglés | MEDLINE | ID: mdl-33830745

RESUMEN

The ecological roles of influent microflora in activated sludge communities have not been well investigated. Herein, parallel lab-scale anoxic/aerobic (A/O) membrane bioreactors (MBRs), which were fed with raw (MBR-C) and sterilized (MBR-T) municipal wastewater, were operated. The MBRs showed comparable nitrogen removal but superior phosphorus removal in MBR-C than MBR-T over the long-term operation. The MBR-C sludge community had higher diversity and deterministic assembly than the MBR-T sludge community as revealed by 16S rRNA gene sequencing and null model analysis. Moreover, the MBR-C sludge community had higher abundance of polyphosphate accumulating organisms (PAOs) and hydrolytic/fermentative bacteria (HFB) but lower abundance of glycogen-accumulating organisms (GAOs), in comparison with MBR-T sludge. Intriguingly, the results of both the net growth rate and Sloan's neutral model demonstrated that HFB in the sludge community were generally slow-growing or nongrowing and their consistent presence in activated sludge was primarily attributed to the HFB immigration from influent microflora. Positive correlations between PAOs and HFB and potential competitions between HFB and GAOs were observed, as revealed by the putative species-species associations in the ecological networks. Taken together, this work deciphers the positive ecological roles of influent microflora, particularly HFB, in system functioning and highlights the necessity of incorporating influent microbiota for the design and modeling of A/O MBR plants.


Asunto(s)
Fósforo , Aguas Residuales , Reactores Biológicos , Nitrógeno , ARN Ribosómico 16S/genética , Aguas del Alcantarillado , Eliminación de Residuos Líquidos
12.
Angew Chem Int Ed Engl ; 60(2): 701-705, 2021 Jan 11.
Artículo en Inglés | MEDLINE | ID: mdl-32975866

RESUMEN

Substrate-supported metal-organic frameworks (MOFs) films are desired to realize their potential in practical applications. Herein, a novel substrate-seeding secondary-growth strategy is developed to prepare composites of uniform MOFs films on aerogel walls. Briefly, the organic ligand is "pre-seeded" onto the aerogel walls, and then a small amount of metal-ion solution is sprayed onto the prepared aerogel. The sprayed solution diffuses along the aerogel walls to form a continuous thin layer, which confines the nucleation reaction, promoting the formation of uniform MOFs films on the aerogel walls. The whole process is simple in operation, highly efficient, and eco-friendly. The resulting hierarchical MOFs/aerogel composites have abundant accessible active sites and enable excellent mass transfer, which endows the composite with outstanding catalytic activity and stability in both liquid-phase CO2 cycloaddition and electrochemical oxygen evolution reaction (OER) process.

13.
Appl Environ Microbiol ; 86(18)2020 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-32651202

RESUMEN

Fungi are known to play important roles in pollutant transformation in activated sludge-based wastewater treatment plants (WWTPs). However, the seasonality and distributions of fungal populations in different-sized flocs have still remained largely unknown. In this study, seasonal population dynamics and community separation of fungi in a municipal WWTP across a 1-year period were investigated. We classified all taxa into six categories based on abundances to assess their roles and contributions to the whole community. The results showed that the rare taxa (<0.01%) contributed greatly to species richness (95.27%). Conversely, although low in species diversity, abundant taxa (≥1%) accounted for the majority (89.45%) of the total relative abundance, which suggested that a few core abundant fungi existed in the activated sludge ecosystem. The abundant, conditionally rare, and rare taxa contributed 30.14%, 31.11%, and 38.75%, respectively, to temporal shifts in community structure, and their abundances responded differently to environmental variables, suggesting that these three subcommunities exhibited a large difference in environmental sensitivity. Importantly, the results revealed seasonal dynamics of the whole fungal community and the subcommunities of all the microbial taxon categories, resulting in significant differences in community structures between warm and cold seasons. Furthermore, fungal diversity and the compositions of the whole community and subcommunities differed significantly among flocs of different sizes, which underlined the size-based fungal community separation in activated sludge of WWTPs. The findings of this work improved our understanding of fungal population dynamics and community separation in WWTPs.IMPORTANCE Fungi are important contributors to the various functions of activated sludge in wastewater treatment plants (WWTPs). Unlike previous studies, this work demonstrated the seasonality of the fungal community over a longer time span while it also systematically assessed the contributions of abundant, conditionally rare, and rare taxa to the whole community. Importantly, in the present study, we considered sludge flocs of a certain size range rather than the whole sludge flocs as a community. Our results revealed significant differences in fungal community structure among different-sized flocs, which supported the idea that size-based fungal community segregation is occurring in activated sludge ecosystems. The findings provide new insights into the dynamic changes or distribution of fungi in the bioaggregates of sludge flocs in WWTPs.


Asunto(s)
Hongos/fisiología , Micobioma , Aguas Residuales/microbiología , Secuenciación de Nucleótidos de Alto Rendimiento , Dinámica Poblacional , Estaciones del Año , Aguas del Alcantarillado/microbiología
14.
Langmuir ; 36(26): 7392-7399, 2020 Jul 07.
Artículo en Inglés | MEDLINE | ID: mdl-32493015

RESUMEN

An interesting reversible shape and structure transformation between two types of two-dimensional (2D) metal-organic frameworks (MOFs) has been successfully achieved by the spray method. The ability to precisely control the morphology and structure of 2D MOFs is also developed by altering the amount of MOF precursors and reversing the spray order. Meanwhile, the mechanism of the transformation between two MOFs is studied and conversion is induced by the change of the acidity in the reaction system. In addition, the prepared non-interpenetrate CuBDC twists exhibit more remarkable catalytic performance in C-S coupling reaction than Cu(BDC)(DMF) nanosheets owing to the more unsaturated coordination copper active sites from the non-interpenetrate structure. The catalytic result reveals the relationship between structure and function.

15.
Adv Mar Biol ; 81: 129-165, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30471655

RESUMEN

In this study, the hexachlorobenzene molecule was modified by three-dimensional quantitative structure-activity relationship (3D-QSAR) models and a full factor experimental design to obtain new hexachlorobenzene molecules with low migration ability. The 3D-QSAR models (comparative molecular field analysis (CoMFA) and comparative molecular similarity indices analysis (CoMSIA)) were constructed by SYBLY-X 2.0 software, using experimental data of octanol-air partition coefficients (KOA) for 12 chlorobenzenes (CBs) congeners as the dependent variable, and the structural parameters of CBs as independent variables, respectively. A target molecule (hexachlorobenzene; HCB: its long-distance migration capability leads to pollution of the marine environment in Antarctic and Arctic) was modified using the 3D-QSAR contour maps associated with resolution V of the 210-3 full-factorial experimental design method, and 11 modified HCB molecules were produced with a single chlorine atom (-Cl2) and three chlorine atoms (-Cl1, -Cl3, and -Cl5) replaced with electropositive groups (-COOH, -CN, -CF3, -COF, -NO2, -F, -CHF2, -ONO2, and -SiF3) to increase the logKOA. The new molecules had essentially similar biological enrichment functions and toxicities as HCB but were found to be more easily degraded. A 2D-QSAR model and molecular docking technology indicated that both dipole moments and highest occupied orbital energies of the substituents markedly affected migration and degradation of the new molecules. The abilities of the compounds to undergo long distance migration were assessed. The modified HCB molecules (i.e. 2-CN-HCB, 2-CF3-HCB, 1-F-3-COOH-5-NO2-HCB, 1-NO2-3-CN-5-CHF2-HCB and 1-CN-3-F-5-NO2-HCB) moved from a long-range transport potential of the modified molecules to a relatively low mobility class, and the transport potentials of the remaining modified HCB molecules (i.e. 2-COOH-HCB, 2-COF-HCB, 1-COF-3-ONO2-5-NO2-HCB, 1-F-3-CN-5-SiF3-HCB, 1-F-3-COOH-5-SiF3-HCB and 1-CN-3-SiF3-5-ONO2-HCB) also significantly decreased. These results provide a basic theoretical basis for designing environmentally benign molecules based on HCB.


Asunto(s)
Hexaclorobenceno/química , Contaminantes Químicos del Agua/química , Hidrología , Simulación del Acoplamiento Molecular , Estructura Molecular , Relación Estructura-Actividad Cuantitativa , Proyectos de Investigación
16.
Bioprocess Biosyst Eng ; 41(6): 871-883, 2018 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-29546466

RESUMEN

In-depth understanding of indigenous microbial assemblages resulted from aged contamination by polycyclic aromatic hydrocarbons (PAHs) is of vital importance in successful in situ bioremediation treatments. Soil samples of three boreholes were collected at 12 different vertical depths. Overall, the dominating three-ring PAHs (76.2%) were closely related to distribution patterns of soil dehydrogenase activity, microbial cell numbers, and Shannon biodiversity index (H') of indigenous microorganisms. High-molecular-weight PAHs tend to yield more diverse communities. Results from 16S rRNA analysis indicated that possible functional groups of PAH degradation include three species in Bacillus cereus group, Bacillus sp. SA Ant14, Nocardioides sp., and Ralstonia pickettii. Principal component analysis indicates significant positive correlations between the content of high-molecular-weight PAHs and the distribution of Bacillus weihenstephanensis KBAB4 and Nocardioides sp. The species B. cereus 03BB102, Bacillus thuringiensis, B. weihenstephanensis KBAB4, and Nocardioides sp. were recognized as main PAH degraders and thus recommended to be utilized in further bioremediation applications. The vertical distribution characteristics of PAHs in soil profiles (1-12 m) and the internal relationship between the transport mechanisms of PAHs and the response of soil biological properties help further understand the microbial diversity and activity in an aged site.


Asunto(s)
Bacterias , Biodiversidad , Hidrocarburos Policíclicos Aromáticos/metabolismo , Microbiología del Suelo , Contaminantes del Suelo/metabolismo , Suelo , Bacterias/clasificación , Bacterias/metabolismo
17.
Angew Chem Int Ed Engl ; 57(50): 16426-16430, 2018 Dec 10.
Artículo en Inglés | MEDLINE | ID: mdl-30345597

RESUMEN

Wavelength-controlled dynamic processes are mostly based on light-triggered isomerization or the cleavage/formation of molecular connections. Control over dynamic metathesis reactions by different light wavelengths, which would be useful in controllable dynamic chemistry, has rarely been studied. Taking advantage of the different bond energies of disulfide and diselenide bonds, we have developed a wavelength-driven exchange reaction between disulfides and diselenides, which underwent metathesis under UV light to produce Se-S bonds. When irradiated with visible light, the Se-S bonds were reversed back to those of the original reactants. The conversion of the exchange depends on the wavelength of the incident light. This light-driven metathesis chemistry was also applied to tune the mechanical properties of polymer materials. The visible-light-induced reverse reaction was compatible with reductant-catalyzed disulfide/diselenide metathesis, and could be utilized to develop a dissipative system with light as the energy input.

18.
Bioprocess Biosyst Eng ; 40(12): 1825-1838, 2017 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-28913631

RESUMEN

High-molecular-weight polycyclic aromatic hydrocarbons are persistent organic pollutants with great environmental and human health risks and the associated bioremediation activities have always been hampered by the lack of powerful bacterial species under redox conditions. A Microbacterium sp. strain capable of using benzo(a)pyrene as sole carbon and energy sources under denitrifying conditions was isolated. The difference in protein expression during BaP removal and removal characterization were investigated. A total of 146 proteins were differentially expressed, 44 proteins were significantly up-regulated and 102 proteins were markedly down-regulated. GO and COG analysis showed that BaP removal inhibited the expression of proteins related to glucose metabolism at different levels and activated other metabolic pathway. The proteins associated with catalytic activity and metabolic process were altered significantly. Furthermore, the BaP removal might be occurred in certain organelle of M.CSW3. The strain removed BaP with a speed of 0.0657-1.0072 mg/L/day over the concentrations range 2.5-100 mg/L. High removal rates (>70%) were obtained over the range of pH 7-11 in 14 days. Carbohydrates and organic acids which could be utilized by the strain, as well as heavy metal ions, reduced BaP removal efficiency. However, phenanthrene or pyrene addition enhanced the removal capability of M.CSW3. The strain was proved to have practical potential for bioremediation of PAHs-contaminated soil and this study provided a powerful platform for further application by improving production of associated proteins.


Asunto(s)
Actinobacteria/metabolismo , Proteínas Bacterianas/metabolismo , Benzo(a)pireno/aislamiento & purificación , Proteómica , Actinobacteria/genética , Carbono/metabolismo , Catálisis , Desnitrificación , Regulación hacia Abajo , Glucosa/metabolismo , Filogenia , ARN Ribosómico 16S/genética
19.
ACS Appl Mater Interfaces ; 16(28): 36892-36900, 2024 Jul 17.
Artículo en Inglés | MEDLINE | ID: mdl-38963902

RESUMEN

Dynamic color-changing materials have attracted broad interest due to their widespread applications in visual sensing, dynamic color display, anticounterfeiting, and image encryption/decryption. In this work, we demonstrate a novel pH-responsive dynamic color-changing material based on a metal-insulator-metal (MIM) Fabry-Perot (FP) cavity with a pH-responsive poly(N,N-dimethylaminoethyl methacrylate) (PDMAEMA) brush layer as the responsive insulating layer. The pH-responsive PDMAEMA brush undergoes protonation at a low pH value (pH < 6), which induces different swelling degrees in response to pH and thus refractive index and thickness change of the insulator layer of the MIM FP cavity. This leads to significant optical property changes in transmission and a distinguishable color change spanning the whole visible region by adjusting the pH value of the external environment. Due to the reversible conformational change of the PDMAEMA and the formation of covalent bonds between the PDMAEMA molecular chain and the Ag substrate, the MIM FP cavity exhibits stable performance and good reproducibility. This pH-responsive MIM FP cavity establishes a new way to modulate transmission color in the full visible region and exhibits a broad prospect of applications in dynamic color display, real-time environment monitoring, and information encryption and decryption.

20.
J Hazard Mater ; 466: 133547, 2024 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-38262324

RESUMEN

Identification of key As mobilization processes in estuarine sediments is challenging due to the transitional hydrodynamic condition and the technical restriction of obtaining fine-scale results. Herein, high-resolution (µm to mm) and in situ profiling of As with associated elements (Fe, Mn, and S) by the diffusive gradients in thin-film (DGT) technique were applied and coupled with pore water and solid phase analysis as well as microbial high-throughput sequencing, to ascertain the driving mechanisms of As mobilization in the sediments of Pearl River Estuary (PRE). Significant diffusion fluxes of As from sediment to water were observed, particularly in the upper estuary. With the seaward increase of salinity, the driving mechanism of As mobilization gradually shifted from microbial-induced dissimilatory Fe reduction to saltwater-induced ion exchange. Correspondingly, the dominant Fe-reducing bacteria (FeRB) in sediments changed from the genera Clostridium_sensu_stricto_1 and Bacillus to Ferrimonas and Deferribacter. The presence of dissolved sulfide in deeper sediments contributes to As removal through the formation of As-S precipitates as supported by theoretical calculations. Fine-scale findings revealed seaward changes of As mobilization mechanism in the sediments of a human-impacted estuary and may benefit the understanding of As biogeochemical behavior in estuaries worldwide.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA