Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
1.
Neurochem Res ; 48(8): 2350-2359, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-36947308

RESUMEN

Sympathetic axonal sprouting into dorsal root ganglia is a major phenomenon implicated in neuropathic pain, and sympathetic ganglia blockage may relieve some intractable chronic pain in animal pain models and clinical conditions. These suggest that sympathetic ganglia participated in the maintenance of chronic pain. However, the molecular mechanism underlying sympathetic ganglia-mediated chronic pain is not clear. Here, we found that spared nerve injury treatment upregulated the expression of ADAMTS4 and AP-2α protein and mRNA in the noradrenergic neurons of sympathetic ganglia during neuropathic pain maintenance. Knockdown the ADAMTS4 or AP-2α by injecting specific retro scAAV-TH (Tyrosine Hydroxylase)-shRNA ameliorated the mechanical allodynia induced by spared nerve injury on day 21 and 28. Furthermore, chromatin immunoprecipitation and coimmunoprecipitation assays found that spared nerve injury increased the recruitment of AP-2α to the ADAMTS4 gene promoter, the interaction between AP-2α and histone acetyltransferase p300 and the histone H4 acetylation on day 28. Finally, knockdown the AP-2α reduced the acetylation of H4 on the promoter region of ADAMTS4 gene and suppressed the increase of ADAMTS4 expression induced by spared nerve injury. Together, these results suggested that the enhanced interaction between AP-2α and p300 mediated the epigenetic upregulation of ADAMTS4 in sympathetic ganglia noradrenergic neurons, which contributed to the maintenance of spared nerve injury induced neuropathic pain.


Asunto(s)
Dolor Crónico , Neuralgia , Traumatismos del Sistema Nervioso , Ratas , Animales , Regulación hacia Arriba , Dolor Crónico/metabolismo , Ratas Sprague-Dawley , Neuralgia/genética , Neuralgia/metabolismo , Ganglios Simpáticos , Ganglios Espinales/metabolismo , Traumatismos del Sistema Nervioso/metabolismo , Epigénesis Genética
2.
J Neuroinflammation ; 19(1): 144, 2022 Jun 11.
Artículo en Inglés | MEDLINE | ID: mdl-35690777

RESUMEN

BACKGROUND: The adaption of brain region is fundamental to the development and maintenance of nervous system disorders. The prelimbic cortex (PrL) participates in the affective components of the pain sensation. However, whether and how the adaptation of PrL contributes to the comorbidity of neuropathic pain and depression are unknown. METHODS: Using resting-state functional magnetic resonance imaging (rs-fMRI), genetic knockdown or overexpression, we systematically investigated the activity of PrL region in the pathogenesis of neuropathic pain/depression comorbid using the combined approaches of immunohistochemistry, electrophysiology, and behavior. RESULTS: The activity of PrL and the excitability of pyramidal neurons were decreased, and the osteoclastic tartrate-resistant acid phosphatase 5 (Acp5) expression in PrL neurons was upregulated following the acquisition of spared nerve injury (SNI)-induced comorbidity. Genetic knockdown of Acp5 in pyramidal neurons, but not parvalbumin (PV) neurons or somatostatin (SST) neurons, attenuated the decrease of spike number, depression-like behavior and mechanical allodynia in comorbidity rats. Overexpression of Acp5 in PrL pyramidal neurons decreased the spike number and induced the comorbid-like behavior in naïve rats. Moreover, the expression of interleukin-6 (IL-6), phosphorylated STAT3 (p-STAT3) and acetylated histone H3 (Ac-H3) were significantly increased following the acquisition of comorbidity in rats. Increased binding of STAT3 to the Acp5 gene promoter and the interaction between STAT3 and p300 enhanced acetylation of histone H3 and facilitated the transcription of Acp5 in PrL in the modeled rodents. Inhibition of IL-6/STAT3 pathway prevented the Acp5 upregulation and attenuated the comorbid-like behaviors in rats. CONCLUSIONS: These data suggest that the adaptation of PrL mediated by IL-6/STAT3/Acp5 pathway contributed to the comorbidity of neuropathic pain/depression induced by SNI.


Asunto(s)
Interleucina-6 , Neuralgia , Fosfatasa Ácida/metabolismo , Animales , Comorbilidad , Depresión/metabolismo , Histonas , Interleucina-6/metabolismo , Neuralgia/metabolismo , Ratas , Factor de Transcripción STAT3/metabolismo , Fosfatasa Ácida Tartratorresistente/metabolismo
3.
FASEB J ; 35(7): e21701, 2021 07.
Artículo en Inglés | MEDLINE | ID: mdl-34143529

RESUMEN

Irritable bowel syndrome (IBS) is a common functional gastrointestinal disease. Although visceral hypersensitivity (VH) and disturbed gastrointestinal motility are typical pathophysiological features of IBS, the pathological mechanisms underlying this disease remain unclear. Serotonin system abnormalities are considered to play an important role in the pathomechanisms of IBS. Here, we hypothesize that similar alterations, including VH and colonic motility, induced by serotonin transporter (SERT) knockout result from altered serotonin signaling. We sought to determine the molecular mechanism underlying VH and colonic dysmotility induced by SERT knockout. We found that female SERT (slc6a4)-knockout (KO; ie, slc6a4-/- ) rats exhibited lower pain pressure thresholds (PPTs) than wild-type (WT; ie, slc6a4+/+ ) rats in response to colorectal distension (CRD). Significantly increased fecal pellet output and reduced concentration of serum tryptophan were observed in the female SERT KO rats. The concentrations of 5-hydroxytryptamine (5-HT) in platelet-rich plasma (PRP) and serum in SERT KO rats were lower than those in WT rats, but the numbers of enterochromaffin cells (ECs) and the concentrations of 5-HT in colon of SERT KO rats were higher than those of WT rats. Finally, increased expression levels of 5-HT1B receptors, 5-HT2C receptors, 5-HT3A receptors, 5-HT3B receptors, 5-HT6 receptors, 5-HT7 receptors, and glycosylated dopamine transporters (DATs) were found in the female SERT KO rats. We concluded that alterations in the serotonin system induced by the knockout of slc6a4 might result in VH and accelerated gastrointestinal motility in female SERT KO rats, which can be used as an animal model of IBS.


Asunto(s)
Colon/patología , Motilidad Gastrointestinal , Hipersensibilidad/patología , Síndrome del Colon Irritable/patología , Proteínas de Transporte de Serotonina en la Membrana Plasmática/fisiología , Serotonina/metabolismo , Animales , Animales Modificados Genéticamente , Colon/metabolismo , Modelos Animales de Enfermedad , Femenino , Hipersensibilidad/etiología , Hipersensibilidad/metabolismo , Síndrome del Colon Irritable/etiología , Síndrome del Colon Irritable/metabolismo , Ratas , Ratas Sprague-Dawley
4.
BMC Med Inform Decis Mak ; 22(1): 218, 2022 08 13.
Artículo en Inglés | MEDLINE | ID: mdl-35964129

RESUMEN

BACKGROUND: The clinical practice of shared decision-making (SDM) has grown in importance. However, most studies on SDM practice concentrated on providing auxiliary knowledge from the third-party standpoint without consideration for the value preferences of doctors and patients. The essences of these methods are complete and manual negotiation, and the problems of high cost, time consumption, delayed response, and decision fatigue are serious. METHODS: In response to the above limitations, this article proposes a fuzzy constraint-directed agent-based negotiation and recommendation framework for bilateral and multi-issue preference negotiation in SDM (PN-SDM). Its purpose is to provide preference information and intellectualize PN-SDM to promote SDM practice. We modeled PN-SDM problems as distributed fuzzy constraint satisfaction problems and designed the doctor agent and patient agent to negotiate on behalf of the doctor and patient. The negotiation result was then transformed into treatment plans by the recommendation model. The proposed negotiation and recommendation models were introduced in detail by an instance. RESULTS: The proposed method with different strategies and negotiation pairs achieves good performance in terms of negotiation running time, negotiation rounds, and combined aggregated satisfaction value. Specifically, it can feasibly and effectively complete multiple rounds of PN-SDM in a few seconds and obtain higher satisfaction. CONCLUSION: The experimental results indicate that the negotiation model can effectively simulate preference negotiation and relieve the pressure of increasing issues. The recommendation model can assist in decision-making and help to realize SDM. In addition, it can flexibly cope with various negotiation scenarios by using different negotiation strategies (e.g., collaborative, win-win, and competitive).


Asunto(s)
Negociación , Participación del Paciente , Toma de Decisiones , Toma de Decisiones Conjunta , Humanos , Participación del Paciente/métodos , Relaciones Médico-Paciente
5.
Int J Biol Macromol ; 259(Pt 2): 129266, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38199532

RESUMEN

Considering the astonishing prevalence of localized pain affecting billions of patients worldwide, the development of advanced analgesic formulations or delivery systems to achieve clinical applicability is of great significance. In this study, an integrated PDA-based LiH@PDA@Ag@PAA@Gelatin system was designed for sustained delivery of lidocaine hydrochloride (LiH). By optimizing the preparation process and formulation of the hydrogel, the hydrogel exhibited superior mechanical properties, reversibility, adhesion strength, and self-healing attributes. Moreover, PDA@Ag nanoparticles were evenly dispersed within the hydrogel, and the optimized PDA@Ag@PAA@Gelatin showed a higher photothermal conversion efficiency than that of pure PDA. Importantly, LiH@PDA@Ag@PAA@Gelatin could effectively capture and eradicate bacteria through the synergistic interaction between near-infrared (NIR), PDA, Ag and LiH. In vitro and in vivo tests demonstrated that LiH@PDA@Ag@PAA@Gelatin exhibited higher drug delivery efficiency compared to commercial lidocaine patches. By evaluating the mechanical pain withdrawal threshold of the spared nerve injury (SNI) model in rats, it was proven that LiH@PDA@Ag@PAA@Gelatin enhanced and prolonged the analgesic effect of LiH. Furthermore, LiH@PDA@Ag@PAA@Gelatin induced by NIR possessed excellent on-demand photothermal analgesic ability. Therefore, this study develops a convenient method for preparing localized analgesic hydrogel patches, providing an important step towards advancing PDA-based on-demand pain relief applications.


Asunto(s)
Analgesia , Indoles , Nanopartículas del Metal , Polímeros , Humanos , Ratas , Animales , Adhesivos , Lidocaína/farmacología , Lidocaína/uso terapéutico , Hidrogeles/farmacología , Gelatina , Plata , Dolor/tratamiento farmacológico , Analgésicos/farmacología , Analgésicos/uso terapéutico
6.
Adv Sci (Weinh) ; : e2401855, 2024 Jul 07.
Artículo en Inglés | MEDLINE | ID: mdl-38973158

RESUMEN

Clinically, chronic pain and depression often coexist in multiple diseases and reciprocally reinforce each other, which greatly escalates the difficulty of treatment. The neural circuit mechanism underlying the chronic pain/depression comorbidity remains unclear. The present study reports that two distinct subregions in the paraventricular thalamus (PVT) play different roles in this pathological process. In the first subregion PVT posterior (PVP), glutamatergic neurons (PVPGlu) send signals to GABAergic neurons (VLPAGGABA) in the ventrolateral periaqueductal gray (VLPAG), which mediates painful behavior in comorbidity. Meanwhile, in another subregion PVT anterior (PVA), glutamatergic neurons (PVAGlu) send signals to the nucleus accumbens D1-positive neurons and D2-positive neurons (NAcD1→D2), which is involved in depression-like behavior in comorbidity. This study demonstrates that the distinct thalamo-subcortical circuits PVPGlu→VLPAGGABA and PVAGlu→NAcD1→D2 mediated painful behavior and depression-like behavior following spared nerve injury (SNI), respectively, which provides the circuit-based potential targets for preventing and treating comorbidity.

7.
CNS Neurosci Ther ; 28(8): 1259-1267, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-35633059

RESUMEN

AIMS: Potassium (K+ ) channels have been demonstrated to play a prominent involvement in nociceptive processing. Kir7.1, the newest members of the Kir channel family, has not been extensively studied in the CNS, and its function remains largely unknown. The present study investigated the role of spinal Kir7.1 in the development of pathological pain. METHODS AND RESULTS: Neuropathic pain was induced by spared nerve injury (SNI). The mechanical sensitivity was assessed by von Frey test. Immunofluorescence staining assay revealed that Kir7.1 was predominantly expressed in spinal neurons but not astrocytes or microglia in normal rats. Western blot results showed that SNI markedly decreased the total and membrane expression of Kir7.1 in the spinal dorsal horn accompanied by mechanical hypersensitivity. Blocking Kir7.1 with the specific antagonist ML418 or knockdown kir7.1 by siRNA led to mechanical allodynia. Co-IP results showed that the spinal kir7.1 channels were decorated by SUMO-1 but not SUMO-2/3, and Kir7.1 SUMOylation was upregulated following SNI. Moreover, inhibited SUMOylation by GA (E1 inhibitor) or 2-D08 (UBC9 inhibitor) can increase the spinal surface Kir7.1 expression. CONCLUSION: SUMOylation of the Kir7.1 in the spinal cord might contribute to the development of SNI-induced mechanical allodynia by decreasing the Kir7.1 surface expression in rats.


Asunto(s)
Hiperalgesia , Neuralgia , Animales , Hiperalgesia/metabolismo , Neuralgia/metabolismo , Neuronas/metabolismo , Ratas , Ratas Sprague-Dawley , Médula Espinal/patología , Asta Dorsal de la Médula Espinal/metabolismo , Sumoilación
8.
Front Pharmacol ; 11: 01082, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33013355

RESUMEN

BACKGROUND: Irritable bowel syndrome (IBS) is a functional gut disease characterized by visceral hypersensitivity and gut motor dysfunction. Serotonin (5-hydroxytryptamine, 5-HT) is an important enteric neurotransmitter. High levels of 5-HT aggravate IBS symptoms. The serotonin reuptake transporter (SERT) is a membrane-embedded transporter involved in IBS pathogenesis that plays an important role in regulating 5-HT signaling. AIM: We investigated whether gut motor function was altered in SERT-knockout (SERT-KO) rats. Additionally, we sought to determine whether Shugan decoction (SGD), a clinically experienced prescription for the treatment of IBS, exerts regulatory effects on intestinal motility in SERT-KO rats, and attempted to identify the mechanisms involved. METHOD: SERT-KO rats were produced by transcription activator-like effector nuclease (TALEN) technology. Fecal pellet output was measured for ten consecutive days to estimate distal colonic motility. Small intestinal motility was measured by charcoal-meal experiments. The colonic and small intestinal muscle contractile activities were measured by organ bath study. Western blot was used to analyze the muscarinic receptor expression in colon tissue. RESULT: Compared with that in wild-type (WT) rats, the defecation amount, amplitude of spontaneous contraction, and the tension of ACh-induced contraction of colonic longitudinal smooth muscle in SERT-KO rats were significantly increased. The expression of muscarinic receptor subtype-3 (M3R) in the colons of SERT-KO rats was also elevated. SGD can decrease defecation of SERT-KO rats. Moreover, SGD reduced the amplitude of spontaneous contraction, the frequency and tension of ACh-induced contraction of colonic longitudinal smooth muscle, and the expression of M3R in the colon in SERT-KO rats. CONCLUSIONS: SERT-KO rats showed increased defecation accompanied by enhanced colonic motility and M3R expression. The findings suggest that SGD modifies colonic dysmotility and reduces defecation in SERT-KO rats by down-regulating M3R expression in the colon.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA