Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 61
Filtrar
1.
Chem Rev ; 123(16): 10206-10257, 2023 Aug 23.
Artículo en Inglés | MEDLINE | ID: mdl-37523660

RESUMEN

Using compressive mechanical forces, such as pressure, to induce crystallographic phase transitions and mesostructural changes while modulating material properties in nanoparticles (NPs) is a unique way to discover new phase behaviors, create novel nanostructures, and study emerging properties that are difficult to achieve under conventional conditions. In recent decades, NPs of a plethora of chemical compositions, sizes, shapes, surface ligands, and self-assembled mesostructures have been studied under pressure by in-situ scattering and/or spectroscopy techniques. As a result, the fundamental knowledge of pressure-structure-property relationships has been significantly improved, leading to a better understanding of the design guidelines for nanomaterial synthesis. In the present review, we discuss experimental progress in NP high-pressure research conducted primarily over roughly the past four years on semiconductor NPs, metal and metal oxide NPs, and perovskite NPs. We focus on the pressure-induced behaviors of NPs at both the atomic- and mesoscales, inorganic NP property changes upon compression, and the structural and property transitions of perovskite NPs under pressure. We further discuss in depth progress on molecular modeling, including simulations of ligand behavior, phase-change chalcogenides, layered transition metal dichalcogenides, boron nitride, and inorganic and hybrid organic-inorganic perovskites NPs. These models now provide both mechanistic explanations of experimental observations and predictive guidelines for future experimental design. We conclude with a summary and our insights on future directions for exploration of nanomaterial phase transition, coupling, growth, and nanoelectronic and photonic properties.

2.
J Transl Med ; 21(1): 915, 2023 12 16.
Artículo en Inglés | MEDLINE | ID: mdl-38104081

RESUMEN

BACKGROUND: SARS-CoV-2, the pathogen of COVID-19, is a worldwide threat to human health and causes a long-term burden on the cardiovascular system. Individuals with pre-existing cardiovascular diseases are at higher risk for SARS-CoV-2 infection and tend to have a worse prognosis. However, the relevance and pathogenic mechanisms between COVID-19 and cardiovascular diseases are not yet completely comprehended. METHODS: Common differentially expressed genes (DEGs) were obtained in datasets of human induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs) infected with SARS-CoV-2 and myocardial tissues from heart failure patients. Further GO and KEGG pathway analysis, protein-protein interaction (PPI) network construction, hub genes identification, immune microenvironment analysis, and drug candidate predication were performed. Then, an isoproterenol-stimulated myocardial hypertrophy cell model and a transverse aortic constriction-induced mouse heart failure model were employed to validate the expression of hub genes. RESULTS: A total of 315 up-regulated and 78 down-regulated common DEGs were identified. Functional enrichment analysis revealed mitochondrial metabolic disorders and extensive immune inflammation as the most prominent shared features of COVID-19 and cardiovascular diseases. Then, hub DEGs, as well as hub immune-related and mitochondria-related DEGs, were screened. Additionally, nine potential therapeutic agents for COVID-19-related cardiovascular diseases were proposed. Furthermore, the expression patterns of most of the hub genes related to cardiovascular diseases in the validation dataset along with cellular and mouse myocardial damage models, were consistent with the findings of bioinformatics analysis. CONCLUSIONS: The study unveiled the molecular networks and signaling pathways connecting COVID-19 and cardiovascular diseases, which may provide novel targets for intervention of COVID-19-related cardiovascular diseases.


Asunto(s)
COVID-19 , Enfermedades Cardiovasculares , Insuficiencia Cardíaca , Células Madre Pluripotentes Inducidas , Enfermedades Mitocondriales , Humanos , Animales , Ratones , Enfermedades Cardiovasculares/genética , SARS-CoV-2 , Biología Computacional , Modelos Animales de Enfermedad , Inflamación/genética
3.
J Am Chem Soc ; 143(7): 2688-2693, 2021 Feb 24.
Artículo en Inglés | MEDLINE | ID: mdl-33577287

RESUMEN

We report here pressure induced nanocrystal coalescence of ordered lead chalcogenide nanocrystal arrays into one-dimensional (1D) and 2D nanostructures. In particular, atomic crystal phase transitions and mesoscale coalescence of PbS and PbSe nanocrystals have been observed and monitored in situ respectively by wide- and small-angle synchrotron X-ray scattering techniques. At the atomic scale, both nanocrystals underwent reversible structural transformations from cubic to orthorhombic at significantly higher pressures than those for the corresponding bulk materials. At the mesoscale, PbS nanocrystal arrays displayed a superlattice transformation from face-centered cubic to lamellar structures, while no clear mesoscale lattice transformation was observed for PbSe nanocrystal arrays. Intriguingly, transmission electron microscopy showed that the applied pressure forced both spherical nanocrystals to coalesce into single crystalline 2D nanosheets and 1D nanorods. Our results confirm that pressure can be used as a straightforward approach to manipulate the interparticle spacing and engineer nanostructures with specific morphologies and, therefore, provide insights into the design and functioning of new semiconductor nanocrystal structures under high-pressure conditions.

4.
Chem Rev ; 119(12): 7673-7717, 2019 06 26.
Artículo en Inglés | MEDLINE | ID: mdl-31059242

RESUMEN

Nanoparticle (NP) high pressure behavior has been extensively studied over the years. In this review, we summarize recent progress on the studies of pressure induced NP phase behavior, property, and applications. This review starts with a brief overview of high pressure characterization techniques, coupled with synchrotron X-ray scattering, Raman, fluorescence, and absorption. Then, we survey the pressure induced phase transition of NP atomic crystal structure including size dependent phase transition, amorphization, and threshold pressures using several typical NP material systems as examples. Next, we discuss the pressure induced phase transition of NP mesoscale structures including topics on pressure induced interparticle separation distance, NP coupling, and NP coalescence. Pressure induced new properties and applications in different NP systems are highlighted. Finally, outlooks with future directions are discussed.

5.
J Am Chem Soc ; 142(14): 6505-6510, 2020 Apr 08.
Artículo en Inglés | MEDLINE | ID: mdl-32202423

RESUMEN

Understanding structural stability and phase transformation of nanoparticles under high pressure is of great scientific interest, as it is one of the crucial factors for design, synthesis, and application of materials. Even though high-pressure research on nanomaterials has been widely conducted, their shape-dependent phase transition behavior still remains unclear. Examples of phase transitions of CdS nanoparticles are very limited, despite the fact that it is one of the most studied wide band gap semiconductors. Here we have employed in situ synchrotron wide-angle X-ray scattering and transmission electron microscopy (TEM) to investigate the high-pressure behaviors of CdS nanoparticles as a function of particle shapes. We observed that CdS nanoparticles transform from wurtzite to rocksalt phase at elevated pressure in comparison to their bulk counterpart. Phase transitions also vary with particle shape: rod-shaped particles show a partially reversible phase transition and the onset of the structural phase transition pressure decreases with decreasing surface-to-volume ratios, while spherical particles undergo irreversible phase transition with relatively low phase transition pressure. Additionally, TEM images of spherical particles exhibited sintering-induced morphology change after high-pressure compression. Calculations of the bulk modulus reveal that spheres are more compressible than rods in the wurtzite phase. These results indicate that the shape of the particle plays an important role in determining their high-pressure properties. Our study provides important insights into understanding the phase-structure-property relationship, guiding future design and synthesis of nanoparticles for promising applications.

6.
Nano Lett ; 19(4): 2614-2619, 2019 04 10.
Artículo en Inglés | MEDLINE | ID: mdl-30848602

RESUMEN

Design and engineering of highly efficient light-harvesting nanomaterial systems to emulate natural photosynthesis for maximizing energy conversion have stimulated extensive efforts. Here we present a new class of photoactive semiconductor nanocrystals that exhibit high-efficiency energy transfer for enhanced photocatalytic hydrogen production under visible light. These nanocrystals are formed through noncovalent self-assembly of In(III) meso-tetraphenylporphine chloride (InTPP) during microemulsion assisted nucleation and growth process. Through kinetic control, a series of uniform nanorods with controlled aspect ratio and high crystallinity have been fabricated. Self-assembly of InTPP porphyrins results in extensive optical coupling and broader coverage of the visible spectrum for efficient light harvesting. As a result, these nanocrystals display excellent photocatalytic hydrogen production and photostability under the visible light in comparison with the commercial InTPP porphyrin powders.


Asunto(s)
Catálisis , Hidrógeno/química , Nanopartículas/química , Porfirinas/química , Emulsiones/efectos de la radiación , Transferencia de Energía/efectos de la radiación , Luz , Nanopartículas/efectos de la radiación , Nanoestructuras/química , Fotosíntesis/efectos de la radiación , Porfirinas/síntesis química
7.
Nano Lett ; 19(6): 3676-3683, 2019 06 12.
Artículo en Inglés | MEDLINE | ID: mdl-31035748

RESUMEN

Semiconductor nanomaterials with controlled morphologies and architectures are of critical importance for high-performance optoelectronic devices. However, the fabrication of such nanomaterials on polymer-based flexible electrodes is particularly challenging due to degradation of the flexible electrodes at a high temperature. Here we report the fabrication of nickel oxide nanopillar arrays (NiO x NaPAs) on a flexible electrode by vapor deposition, which enables highly efficient perovskite solar cells (PSCs). The NiO x NaPAs exhibit an enhanced light transmittance for light harvesting, prohibit exciton recombination, promote irradiation-generated hole transport and collection, and facilitate the formation of large perovskite grains. These advantageous features result in a high efficiency of 20% and 17% for the rigid and flexible PSCs, respectively. Additionally, the NaPAs show no cracking after 500 times of bending, consistent with the mechanic simulation results. This robust fabrication opens a new opportunity for the fabrication of a large area of high-performance flexible optoelectronic devices.

8.
J Am Chem Soc ; 141(13): 5392-5401, 2019 Apr 03.
Artículo en Inglés | MEDLINE | ID: mdl-30848896

RESUMEN

Due to remarkable electronic property, optical transparency, and mechanical flexibility, monolayer molybdenum disulfide (MoS2) has been demonstrated to be promising for electronic and optoelectronic devices. To date, the growth of high-quality and large-scale monolayer MoS2 has been one of the main challenges for practical applications. Here we present a MoS2-OH bilayer-mediated method that can fabricate inch-sized monolayer MoS2 on arbitrary substrates. This approach relies on a layer of hydroxide groups (-OH) that are preferentially attached to the (001) surface of MoS2 to form a MoS2-OH bilayer structure for growth of large-area monolayer MoS2 during the growth process. Specifically, the hydroxide layer impedes vertical growth of MoS2 layers along the [001] zone axis, promoting the monolayer growth of MoS2, constrains growth of the MoS2 monolayer only in the lateral direction into larger area, and effectively reduces sulfur vacancies and defects according to density functional theory calculations. Finally, the hydroxide groups advantageously prevent the MoS2 from interface oxidation in air, rendering high-quality MoS2 monolayers with carrier mobility up to ∼30 cm2 V-1 s-1. Using this approach, inch-sized uniform monolayer MoS2 has been fabricated on the sapphire and mica and high-quality monolayer MoS2 of single-crystalline domains exceeding 200 µm has been grown on various substrates including amorphous SiO2 and quartz and crystalline Si, SiC, Si3N4, and graphene This method provides a new opportunity for the monolayer growth of other two-dimensional transition metal dichalcogenides such as WS2 and MoSe2.

9.
J Nanosci Nanotechnol ; 19(1): 465-469, 2019 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-30327057

RESUMEN

Lead iodide based perovskites are promising optoelectronic materials ideal for solar cells. Recently emerged perovskite nanocrystals (NCs) offer more advantages including improved size-tunable band gap, structural stability, and solvent-based processing. Here we report a simple surfactant-assisted two-step synthesis to produce monodisperse PbI2 NCs which are then converted to methylammonium lead iodide perovskite NCs. Based on electron microscopy characterization, these NCs showed competitive monodispersity. Combined results from X-ray diffraction patterns, optical absorption, and photoluminescence confirmed the formation of high quality methylammonium lead iodide perovskite NCs. More importantly, by avoiding the use of hard-to-remove chemicals, the resulted perovskite NCs can be readily integrated in applications, especially solar cells through versatile solution/colloidal-based methods.

10.
Nano Lett ; 18(1): 560-566, 2018 01 10.
Artículo en Inglés | MEDLINE | ID: mdl-29277993

RESUMEN

There has been a widespread interest in the preparation of self-assembled porphyrin nanostructures and their ordered arrays, aiming to emulate natural light harvesting processes and energy storage and to develop new nanostructured materials for photocatalytic process. Here, we report controlled synthesis of one-dimensional porphyrin nanostructures such as nanorods and nanowires with well-defined self-assembled porphyrin networks that enable efficient energy transfer for enhanced photocatalytic activity in hydrogen generation. Preparation of these one-dimensional nanostructures is conducted through noncovalent self-assembly of porphyrins confined within surfactant micelles. X-ray diffraction and transmission electron microscopy results reveal that these one-dimensional nanostructures contain stable single crystalline structures with controlled interplanar separation distance. Optical absorption characterizations show that the self-assembly enables effective optical coupling of porphyrins, resulting in much more enhanced optical absorption in comparison with the original porphyrin monomers, and the absorption bands red shift to more extensive visible light spectrum. The self-assembled porphyrin network facilitates efficient energy transfer among porphyrin molecules and the delocalization of excited state electrons for enhanced photocatalytic hydrogen production under visible light.

11.
Nano Lett ; 18(7): 4467-4472, 2018 07 11.
Artículo en Inglés | MEDLINE | ID: mdl-29940113

RESUMEN

Anisotropic nanoparticles, such as nanorods and nanoprisms, enable packing of complex nanoparticle structures with different symmetry and assembly orientation, which result in unique functions. Despite previous extensive efforts, formation of large areas of oriented or aligned nanoparticle structures still remains a great challenge. Here, we report fabrication of large-area arrays of vertically aligned gold nanorods (GNR) through a controlled evaporation deposition process. We began with a homogeneous suspension of GNR and surfactants prepared in water. During drop casting on silicon substrates, evaporation of water progressively enriched the concentrations of the GNR suspension, which induces the balance between electrostatic interactions and entropically driven depletion attraction in the evaporating solution to produce large-area arrays of self-assembled GNR on the substrates. Electron microscopy characterizations revealed the formation of layers of vertically aligned GNR arrays that consisted of hexagonally close-packed GNR in each layer. Benefiting from the close-packed GNR arrays and their smooth topography, the GNR arrays exhibited a surface-enhanced Raman scattering (SERS) signal for molecular detection at a concentration as low as 10-15 M. Because of the uniformity in large area, the GNR arrays exhibited exceptional detecting reproducibility and operability. This method is scalable and cost-effective and could lead to diverse packing structures and functions by variation of guest nanoparticles in the suspensions.

12.
Angew Chem Int Ed Engl ; 58(35): 11956-11966, 2019 Aug 26.
Artículo en Inglés | MEDLINE | ID: mdl-30913343

RESUMEN

Self-assembly of anisotropic plasmonic nanomaterials into ordered superstructures has become popular in nanoscience because of their unique anisotropic optical and electronic properties. Gold nanorods (GNRs) are a well-defined functional building block for fabrication of these superstructures. They possess important anisotropic plasmonic characteristics that result from strong local electric field and are responsive to visible and near-IR light. There are recent examples of assembling the GNRs into ordered arrays or superstructures through processes such as solvent evaporation and interfacial assembly. In this Minireview, recent progress in the development of the self-assembled GNR arrays is described, with focus on the formation of oriented GNR arrays on substrates. Key driving forces are discussed, and different strategies and self-assembly processes of forming oriented GNR arrays are presented. The applications of the oriented GNR arrays in optoelectronic devices are also overviewed, especially surface enhanced Raman scattering (SERS).

13.
Nano Lett ; 17(11): 6916-6921, 2017 11 08.
Artículo en Inglés | MEDLINE | ID: mdl-29019240

RESUMEN

Structurally controlled nanoparticles, such as core-shell nanocomposite particles by combining two or more compositions, possess enhanced or new functionalities that benefited from the synergistic coupling of the two components. Here we report new nanocomposite particles with self-assembled porphyrin arrays as the core surrounded by amorphous silica as the shell. The synthesis of such nanocomposite nanoparticles was conducted through a combined surfactant micelle confined self-assembly and silicate sol-gel process using optically active porphyrin as a functional building block. Depending on kinetic conditions, these particles exhibit structure and function at multiple length scales and locations. At the molecular scale, the porphyrins as the building blocks provide well-defined macromolecular structures for noncovalent self-assembly and unique chemistry for high-yield generation of singlet oxygen for photodynamic therapy (PDT). On the nanoscale, controlled noncovalent interactions of the porphyrin building block result in an extensive self-assembled porphyrin network that enables efficient energy transfer and impressive fluorescence for cell labeling, evidenced by absorption and photoluminescence spectra. Finally, the thin silicate shell on the nanoparticle surface allows easy functionalization, and the resultant targeting porphyrin-silica nanocomposites can selectively destroy tumor cells upon receiving light irradiation.


Asunto(s)
Preparaciones de Acción Retardada/química , Metaloporfirinas/administración & dosificación , Nanocompuestos/química , Fármacos Fotosensibilizantes/administración & dosificación , Dióxido de Silicio/química , Transferencia de Energía , Células HeLa , Humanos , Concentración de Iones de Hidrógeno , Metaloporfirinas/química , Metaloporfirinas/farmacología , Nanocompuestos/ultraestructura , Nanopartículas/química , Nanopartículas/ultraestructura , Neoplasias/tratamiento farmacológico , Fotoquimioterapia/métodos , Fármacos Fotosensibilizantes/química , Fármacos Fotosensibilizantes/farmacología , Oxígeno Singlete/química
14.
J Am Chem Soc ; 139(41): 14476-14482, 2017 10 18.
Artículo en Inglés | MEDLINE | ID: mdl-28953387

RESUMEN

Nanocrystals (NCs) can self-assemble into ordered superlattices with collective properties, but the ability for controlling NC assembly remains poorly understandable toward achievement of desired superlattice. This work regulates several key variables of PbS NC assembly (e.g., NC concentration and solubility, solvent type, evaporation rate, seed mediation and thermal treatment), and thoroughly exploits the nucleation and growth as well as subsequent superlattice transformation of NC assembles and underneath mechanisms. PbS NCs in toluene self-assemble into a single face-centered-cubic (fcc) and body-centered-cubic (bcc) superlattice, respectively, at concentrations ≤17.5 and ≥70 mg/mL, but an intermediate concentration between them causes the coexistence of the two superlattices. Differently, NCs in hexane or chloroform self-assemble into only a single bcc superlattice. Distinct controls of NC assembly in solvent with variable concentrations confirm the NC concentration/solubility mediated nucleation and growth of superlattice, in which an evaporation-induced local gradient of NC concentration causes simultaneous nucleation of the two superlattices. The observation for the dense packing planes of NCs in fast growing fcc rather than bcc reveals the difference of entropic driving forces responsible for the two distinct superlattices. Decelerating the solvent evaporation does not amend the superlattice symmetry, but improves the superlattice crystallinity. In addition to shrinking the superlattice volume, thermal treatment also transforms the bcc to an fcc superlattice at 175 °C. Through a seed-meditated growth, the concentration-dependent superlattice does not change lattice symmetry over the course of continuous growth, whereas the newly nucleated secondary small nuclei through a concentration change have relatively higher surface energy and quickly dissolve in solution, providing additional NC sources for the ripening of the primarily nucleated larger and stable seeds. The observations under multiple controls of assembly parameters not only provide insights into the nucleation and growth as well as transformation of various superlattice polymorphs but also lay foundation for controlled fabrication of desired superlattice with tailored property.

15.
Nano Lett ; 16(10): 6523-6528, 2016 10 12.
Artículo en Inglés | MEDLINE | ID: mdl-27617350

RESUMEN

The design and engineering of the size, shape, and chemistry of photoactive building blocks enables the fabrication of functional nanoparticles for applications in light harvesting, photocatalytic synthesis, water splitting, phototherapy, and photodegradation. Here, we report the synthesis of such nanoparticles through a surfactant-assisted interfacial self-assembly process using optically active porphyrin as a functional building block. The self-assembly process relies on specific interactions such as π-π stacking and metalation (metal atoms and ligand coordination) between individual porphyrin building blocks. Depending on the kinetic conditions and type of surfactants, resulting structures exhibit well-defined one- to three-dimensional morphologies such as nanowires, nanooctahedra, and hierarchically ordered internal architectures. Specifically, electron microscopy and X-ray diffraction results indicate that these nanoparticles exhibit stable single-crystalline and nanoporous frameworks. Due to the hierarchical ordering of the porphyrins, the nanoparticles exhibit collective optical properties resulted from coupling of molecular porphyrins and photocatalytic activities such as photodegradation of methyl orange (MO) pollutants and hydrogen production.

16.
Nano Lett ; 14(9): 4951-8, 2014 Sep 10.
Artículo en Inglés | MEDLINE | ID: mdl-25075442

RESUMEN

We model the mechanical response of alkanethiol-passivated gold nanoparticle superlattice (supercrystal) at ambient and elevated pressures using large-scale molecular dynamics simulation. Because of the important roles of soft organic ligands in mechanical response, the supercrystals exhibit entropic viscoelasticity during compression at ambient pressure. Applying a hydrostatic pressure of several hundred megapascals on the superlattice, combined with a critical deviatoric stress of the same order along the [110] direction of the face-centered-cubic supercrystal, can drive the room-temperature sintering ("fusion") of gold nanoparticles into ordered gold nanowire arrays. We discuss the molecular-level mechanism of such phenomena and map out a nonequilibrium stress-driven processing diagram, which reveals a region in stress space where fusion of nanoparticles can occur, instead of other competing plasticity or phase transformation processes in the supercrystal. We further demonstrate that, for silver-gold (Ag-Au) binary nanoparticle superlattices in sodium chloride-type superstructure, stress-driven fusion along the [100] direction leads to the ordered formation of Ag-Au multijunction nanowire arrays.

17.
Nano Lett ; 14(12): 7175-9, 2014 Dec 10.
Artículo en Inglés | MEDLINE | ID: mdl-25365754

RESUMEN

Abilities to control the size and shape of nanocrystals in order to tune functional properties are an important grand challenge. Here we report a surfactant self-assembly induced micelle encapsulation method to fabricate porphyrin nanocrystals using the optically active precursor zinc porphyrin (ZnTPP). Through confined noncovalent interactions of ZnTPP within surfactant micelles, nanocrystals with a series of morphologies including nanodisk, tetragonal rod, and hexagonal rod, as well as amorphous spherical particle are synthesized with controlled size and dimension. A phase diagram that describes morphology control is achieved via kinetically controlled nucleation and growth. Because of the spatial ordering of ZnTPP, the hierarchical nanocrystals exhibit both collective optical properties resulted from coupling of molecular ZnTPP and shape dependent photocatalytic activities in photo degradation of methyl orange pollutants. This simple ability to exert rational control over dimension and morphology provides new opportunities for practical applications in photocatalysis, sensing, and nanoelectronics.

18.
J Am Chem Soc ; 136(21): 7634-6, 2014 May 28.
Artículo en Inglés | MEDLINE | ID: mdl-24829089

RESUMEN

We demonstrate for the first time a new mechanical annealing method that can significantly improve the structural quality of self-assembled nanoparticle arrays by eliminating defects at room temperature. Using in situ high-pressure small-angle X-ray scattering, we show that deformation of nanoparticle assembly in the presence of gigapascal level stress rebalances interparticle forces within nanoparticle arrays and transforms the nanoparticle film from an amorphous assembly with defects into a quasi-single crystalline superstructure. Our results show that the existence of the hydrostatic pressure field makes the transformation both thermodynamically and kinetically possible/favorable, thus providing new insight for nanoparticle self-assembly and integration with enhanced mechanical performance.

19.
J Am Chem Soc ; 136(45): 15821-4, 2014 Nov 12.
Artículo en Inglés | MEDLINE | ID: mdl-25355683

RESUMEN

L-Alanine polypeptide thin films were synthesized via atomic layer deposition (ALD). Instead of using an amino acid monomer as the precursor, an L-alanine amino acid derivatized with a protecting group was used to prevent self-polymerization, increase the vapor pressure, and allow linear cycle-by-cycle growth emblematic of ALD. The successful deposition of a conformal polypeptide film has been confirmed by FTIR, TEM, and Mass Spectrometry, and the ALD process has been extended to polyvaline.


Asunto(s)
Alanina/química , Péptidos/química , Nanopartículas/química , Polimerizacion , Dióxido de Silicio/química
20.
Curr Probl Cardiol ; 49(1 Pt A): 102040, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37595858

RESUMEN

Aortic aneurysm and dissection are complicated diseases having both high prevalence and mortality. It is usually diagnosed at advanced stages and posing diagnostic and therapeutic challenges due to the limitations of current detecting methods for aortic dissection used in clinics. Metabonomics demonstrated its great potential capability in the early diagnosis and personalized treatment of several diseases. Emerging evidence suggests that metabolic disorders including amino acid metabolism, glycometabolism, and lipid metabolism disturbance are involved in the pathogenesis of aortic aneurysm and dissection by affecting multiple functional aortic cells. The purpose of this review is to provide new insights into the metabolism alterations and their related regulatory mechanisms with a focus on recent advances and findings and provide a theoretical basis for the diagnosis, prevention, and drug development for aortic aneurysm and dissection.


Asunto(s)
Aneurisma de la Aorta , Disección Aórtica , Humanos , Aneurisma de la Aorta/terapia , Aneurisma de la Aorta/complicaciones , Disección Aórtica/diagnóstico , Disección Aórtica/epidemiología , Disección Aórtica/etiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA