Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Sensors (Basel) ; 24(12)2024 Jun 13.
Artículo en Inglés | MEDLINE | ID: mdl-38931617

RESUMEN

In a diesel engine, piston slap commonly occurs concurrently with fuel combustion and serves as the main source of excitation. Although combustion pressure can be measured using sensors, determining the slap force is difficult without conducting tests. In this study, we propose a method to identify the slap force of the piston to solve this difficult problem. The traditional VMD algorithm easily receives noise interference, which affects the value of parameter combination [k, α] and thus affects the extraction accuracy of the algorithm. First, we obtain the transfer function between the incentive and vibration response through percussion tests. Secondly, a variational modal decomposition method based on whale algorithm optimization is used to separate the slap response from the surface acceleration of the block. Finally, we calculated the slap force using the deconvolution method. Deconvolution is a typical inverse problem of mathematics, often prone to ill-conditioning, and the singular value decomposition and regularization method is used to overcome this flaw and improve accuracy. The proposed method provides an important means to evaluate the angular distribution of the slap force, identify the shock positions on the piston liner, and determine the peak value of the waveform which helps us analyze the vibration characteristics of the piston and optimize the structural design of the engine.

2.
Sensors (Basel) ; 24(1)2023 Dec 28.
Artículo en Inglés | MEDLINE | ID: mdl-38203030

RESUMEN

Due to the superior robustness of outlier signals and the unique advantage of not relying on a priori knowledge, Convolution Sparse Filtering (CSF) is drawing more and more attention. However, the excellent properties of CSF is limited by its inappropriate selection of the number and length of its filters. Therefore, the Adaptive Convolution Sparse Filtering (ACSF) method is proposed in this paper to implement an end-to-end health monitoring and fault diagnostic model. Firstly, a novel metric entropy-time function (He-T) is proposed to measure the accuracy and efficiency of signals filtered by the CSF. Then, the filtered signal with the minimum He-T is detected with particle swarm optimization. Finally, the failure mode is diagnosed according to the envelope spectrum of the signal with minimum He-T. The effectiveness and efficiency of the ACSF is demonstrated through the experiment. The results indicate the ACSF can extract the failure characteristic of the gearbox.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA