Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Proteomes ; 11(2)2023 May 06.
Artículo en Inglés | MEDLINE | ID: mdl-37218923

RESUMEN

Extracellular vesicles (EVs), the lipid bilayer membranous structures of particles, are produced and released from almost all cells, including eukaryotes and prokaryotes. The versatility of EVs has been investigated in various pathologies, including development, coagulation, inflammation, immune response modulation, and cell-cell communication. Proteomics technologies have revolutionized EV studies by enabling high-throughput analysis of their biomolecules to deliver comprehensive identification and quantification with rich structural information (PTMs, proteoforms). Extensive research has highlighted variations in EV cargo depending on vesicle size, origin, disease, and other features. This fact has sparked activities to use EVs for diagnosis and treatment to ultimately achieve clinical translation with recent endeavors summarized and critically reviewed in this publication. Notably, successful application and translation require a constant improvement of methods for sample preparation and analysis and their standardization, both of which are areas of active research. This review summarizes the characteristics, isolation, and identification approaches for EVs and the recent advances in EVs for clinical biofluid analysis to gain novel knowledge by employing proteomics. In addition, the current and predicted future challenges and technical barriers are also reviewed and discussed.

2.
Protein Pept Lett ; 29(7): 567-573, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35546749

RESUMEN

Protein tyrosine phosphatase receptor-type Q (PTPRQ), a member of the type III tyrosine phosphatase receptor (R3 PTPR) family, is composed of three domains, including 18 extracellular fibronectin type III (FN3) repeats, a transmembrane helix, and a cytoplasmic phosphotyrosine phosphatase (PTP) domain. PTPRQ was initially identified as a transcript upregulated in glomerular mesangial cells in a rat model of glomerulonephritis. Subsequently, studies found that PTPRQ has phosphotyrosine phosphatase and phosphatidylinositol phosphatase activities and can regulate cell proliferation, apoptosis, differentiation, and survival. Further in vivo studies showed that PTPRQ is necessary for the maturation of cochlear hair bundles and is considered a potential gene for deafness. In the recent two decades, 21 mutations in PTPRQ have been linked to autosomal recessive hearing loss (DFNB84) and autosomal dominant hearing loss (DFNA73). Recent mutations, deletions, and amplifications of PTPRQ have been observed in many types of cancers, which indicate that PTPRQ might play an essential role in the development of many cancers. In this review, we briefly describe PTPRQ structure and enzyme activity and focus on the correlation between PTPRQ and human disease. A profound understanding of PTPRQ could be helpful in the identification of new therapeutic targets to treat associated diseases.


Asunto(s)
Cóclea/metabolismo , Pérdida Auditiva , Proteínas Tirosina Fosfatasas Clase 3 Similares a Receptores/metabolismo , Animales , Cóclea/crecimiento & desarrollo , Fibronectinas , Pérdida Auditiva/genética , Humanos , Fosfatidilinositoles , Proteínas Tirosina Fosfatasas/genética , Proteínas Tirosina Fosfatasas/metabolismo , Ratas , Proteínas Tirosina Fosfatasas Clase 3 Similares a Receptores/química
3.
Anticancer Agents Med Chem ; 21(8): 949-962, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-32951587

RESUMEN

Chemoresistance, which leads to the failure of chemotherapy and further tumor recurrence, presents the largest hurdle for the success of anti-cancer therapy. In recent years, metformin, a widely used first-line antidiabetic drug, has attracted increasing attention for its anti-cancer effects. A growing body of evidence indicates that metformin can sensitize tumor responses to different chemotherapeutic drugs, such as hormone modulating drugs, anti-metabolite drugs, antibiotics, and DNA-damaging drugs via selective targeting of Cancer Stem Cells (CSCs), improving the hypoxic microenvironment, and by suppressing tumor metastasis and inflammation. In addition, metformin may regulate metabolic programming, induce apoptosis, reverse Epithelial to Mesenchymal Transition (EMT), and Multidrug Resistance (MDR). In this review, we summarize the chemosensitization effects of metformin and focus primarily on its molecular mechanisms in enhancing the sensitivity of multiple chemotherapeutic drugs, through targeting of mTOR, ERK/P70S6K, NF-κB/HIF-1 α, and Mitogen- Activated Protein Kinase (MAPK) signaling pathways, as well as by down-regulating the expression of CSC genes and Pyruvate Kinase isoenzyme M2 (PKM2). Through a comprehensive understanding of the molecular mechanisms of chemosensitization provided in this review, the rationale for the use of metformin in clinical combination medications can be more systematically and thoroughly explored for wider adoption against numerous cancer types.>.


Asunto(s)
Antineoplásicos/farmacología , Metformina/farmacología , Antineoplásicos/metabolismo , Apoptosis/efectos de los fármacos , Proteínas Portadoras/genética , Proteínas Portadoras/metabolismo , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Regulación hacia Abajo , Resistencia a Antineoplásicos/efectos de los fármacos , Transición Epitelial-Mesenquimal/efectos de los fármacos , Quinasas MAP Reguladas por Señal Extracelular/metabolismo , Humanos , Subunidad alfa del Factor 1 Inducible por Hipoxia/metabolismo , Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo , Metformina/metabolismo , Quinasas de Proteína Quinasa Activadas por Mitógenos/metabolismo , FN-kappa B/metabolismo , Células Madre Neoplásicas , Proteínas Quinasas S6 Ribosómicas 70-kDa/metabolismo , Transducción de Señal , Serina-Treonina Quinasas TOR/metabolismo , Hormonas Tiroideas/genética , Hormonas Tiroideas/metabolismo , Proteínas de Unión a Hormona Tiroide
4.
J Interferon Cytokine Res ; 38(9): 363-369, 2018 09.
Artículo en Inglés | MEDLINE | ID: mdl-30230981

RESUMEN

Inflammation is mediated by cytokines and chemokines, which are considered targets of inflammatory diseases. Mounting evidence has demonstrated the anti-inflammatory benefits of metformin. However, the underlying mechanisms are not completely understood. In this study, we aim to elucidate the regulatory effects of metformin on chemokine expression and the possible mechanisms using RAW264.7 cells, a mouse macrophage cell line, as a model. First, we treated the cells with lipopolysaccharide (LPS), and found that the expression of CXCL10 and CXCL11 was markedly induced in a dose- and time-dependent fashion concurrent with the inhibition of AMPK activity. Then, we treated the cells with metformin, and analyzed the expression of CCL2, CXCL10, and CXCL11 by quantitative real-time polymerase chain reaction (PCR). We observed that metformin prevented the stimulating effect of LPS on these chemokines as well as IL-1 and IL-6. Second, the inhibitory effects of metformin on LPS-induced chemokine expression were diminished by Compound C, a chemical inhibitor of AMPK. Finally, we investigated whether the NF-κB signaling pathway is regulated by metformin in this setting. Our results showed that metformin inhibited the phosphorylation of I-κBα and p65 while it activated AMPK. Therefore, the results suggest that metformin inhibits LPS-induced chemokine expression through the AMPK and NF-κB signaling pathways.


Asunto(s)
Proteínas Quinasas Activadas por AMP/metabolismo , Quimiocinas/biosíntesis , Quimiocinas/deficiencia , Metformina/farmacología , FN-kappa B/metabolismo , Transducción de Señal/efectos de los fármacos , Animales , Quimiocinas/genética , Quimiocinas/metabolismo , Perfilación de la Expresión Génica , Ratones , Células RAW 264.7
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA