Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
Neurochem Res ; 46(4): 778-791, 2021 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-33411226

RESUMEN

In this study, LRCF, a long noncoding RNA (lncRNA) related to cognitive function, which was first discovered and named by our group, was shown to be involved in the propofol-induced proliferation and apoptosis of oligodendrocytes (OLGs). Our systematic study showed that LRCF expression differs in OLGs of mice of different ages. We found that neonatal mice with a high level of LRCF typically showed greater propofol-induced injury of OLGs. Mechanistic research has shown that LRCF can block the HIF-1α/miR138-5p/Caspase-3 pathway by binding to miR138-5p to form a microRNA (miRNA) sponge and result in cell damage through HIF-1α/Caspase-3 pathway in propofol induced OLGs. This may be the intrinsic reason why neonatal animals with high levels of LRCF tend to develop learning disability and neuro-degeneration more frequently than adults' after exposure to general anesthesia. When LRCF is highly expressed, HIF-1α directly regulates the transcription of the Caspase-3 gene by binding to the transcription factor binding site (TFBS) in its promoter, which induces OLGs apoptosis. LRCF is crucial for the mutual activation of the HIF-1α/miR138-5p/Caspase-3 OLGs survival pathway and the HIF-1α/Caspase-3 OLGs damage pathway. This study is the first to report that up-regulation of HIF-1α in OLGs treated with Propofol can promote apoptosis through HIF-1α/caspase-3 pathway and resist apoptosis through HIF-1α/miR-138-5p/caspase-3 pathway. The effect of HIF-1α on Caspase-3 expression depends on LRCF expression, which provides important theoretical support for gene therapy targeting LRCF. The further significance of this study is points to an involvement of the genetic background with high LRCF expression may serve as an important marker for identifying patients with a high risk of OLGs injury by Propofol. Thus, caution should be taken when administrating propofol in these patients, especially pediatric patients with high level of LRCF.


Asunto(s)
Oligodendroglía/efectos de los fármacos , Oligodendroglía/metabolismo , Propofol/toxicidad , ARN Largo no Codificante/metabolismo , Factores de Edad , Animales , Animales Recién Nacidos , Apoptosis/efectos de los fármacos , Caspasa 3/metabolismo , Proliferación Celular/efectos de los fármacos , Femenino , Células HEK293 , Humanos , Subunidad alfa del Factor 1 Inducible por Hipoxia/metabolismo , Ratones Endogámicos C57BL , MicroARNs/metabolismo , Regulación hacia Arriba
2.
Phys Chem Chem Phys ; 21(15): 8092-8098, 2019 Apr 21.
Artículo en Inglés | MEDLINE | ID: mdl-30932102

RESUMEN

The correlation between the magnetocaloric effect and magnetotransport property was investigated in Ni43Co7Mn39-xCrxSn11 Heusler alloys. The asymmetric isothermal-magnetoresistance around the phase transformation temperature was observed, from which a parameter γ, determined as the ratio of the asymmetric magnetoresistance to the temperature coefficient of resistance, is proposed. According to Maxwell's equation, the parameter γ is analyzed to be equivalent to the transformation temperature change induced by a magnetic field in martensitic transformation. This finding is confirmed by experimental results. In addition, the γ values can be used to estimate the magnetic entropy change of the martensitic transformation directly without measuring the comprehensive temperature dependence of magnetization curves.

3.
Sci Bull (Beijing) ; 2024 May 22.
Artículo en Inglés | MEDLINE | ID: mdl-38851911

RESUMEN

Perovskite light-emitting diodes (PeLEDs) exhibit remarkable potential in the field of displays and solid-state lighting. However, blue PeLEDs, a key element for practical applications, still lag behind their green and red counterparts, due to a combination of strong nonradiative recombination losses and unoptimized device structures. In this report, we propose a buried interface modification strategy to address these challenges by focusing on the bottom-hole transport layer (HTL) of the PeLEDs. On the one hand, a multifunctional molecule, aminoacetic acid hydrochloride (AACl), is introduced to modify the HTL/perovskite interface to regulate the perovskite crystallization. Experimental investigations and theoretical calculations demonstrate that AACl can effectively reduce the nonradiative recombination losses in bulk perovskites by suppressing the growth of low-n perovskite phases and also the losses at the bottom interface by passivating interfacial defects. On the other hand, a self-assembly nanomesh structure is ingeniously developed within the HTLs. This nanomesh structure is meticulously crafted through the blending of poly-(9,9-dioctyl-fluorene-co-N-(4-butyl phenyl) diphenylamine) and poly (n-vinyl carbazole), significantly enhancing the light outcoupling efficiency in PeLEDs. As a result, our blue PeLEDs achieve remarkable external quantum efficiencies, 20.4% at 487 nm and 12.5% at 470 nm, which are among the highest reported values. Our results offer valuable insights and effective methods for achieving high-performance blue PeLEDs.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA