Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Small ; 18(39): e2204236, 2022 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-35988142

RESUMEN

The growth of ultrathin 1D inorganic nanomaterials with controlled diameters remains challenging by current synthetic approaches. A polymer chain templated method is developed to synthesize ultrathin Bi2 O2 CO3 nanotubes. This formation of nanotubes is a consequence of registry between the electrostatic absorption of functional groups on polymer template and the growth habit of Bi2 O2 CO3 . The bulk bismuth precursor is broken into nanoparticles and anchored onto the polymer chain periodically. These nanoparticles react with the functional groups and gradually evolve into Bi2 O2 CO3 nanotubes along the chain. 5.0 and 3.0 nm tubes with narrow diameter deviation are synthesized by using branched polyethyleneimine and polyvinylpyrrolidone as the templates, respectively. Such Bi2 O2 CO3 nanotubes show a decent lithium-ion storage capacity of around 600 mA h g-1 at 0.1 A g-1 after 500 cycles, higher than other reported bismuth oxide anode materials. More interestingly, the Bi materials developed herein still show decent capacity at very low temperatures, that is, around 330 mA h g-1 (-22 °C) and 170 mA h g-1 (-35 °C) after 75 cycles at 0.1 A g-1 , demonstrating their promising potential for practical application in extreme conditions.

2.
Nanomaterials (Basel) ; 12(18)2022 Sep 06.
Artículo en Inglés | MEDLINE | ID: mdl-36144881

RESUMEN

Due to its unique physical and chemical properties, MXene has recently attracted much attention as a promising candidate for wastewater treatment. However, the low water permeation flux of MXene membrane remains a challenge that has not been fully solved. In this study, attapulgite was used to increase the flux of MXene membrane through a facile one-pot method, during which the MXene nanosheets were self-assembled while being intercalated by the attapulgite nanorods to finally form the composite membranes. Under optimal conditions, an increase of water permeation flux of 97.31% could be observed, which was attributed to the broadened nano-channel upon the adequate intercalation of attapulgite nanorods. Its permeation flux and rejection rate for methylene blue (MB) were further studied for diverse applications. In contrast to bare MXene, the permeation flux increased by 61.72% with a still high rejection rate of 90.67%, owing to the size rejection. Overcoming a key technique barrier, this work successfully improved the water permeability of MXene by inserting attapulgite nanorods, heralding the exciting prospects of MXene-based lamellar membrane in dye wastewater treatment.

3.
Adv Sci (Weinh) ; 9(33): e2202627, 2022 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-36253118

RESUMEN

Among extensively studied Li-ion cathode materials, LiCoO2 (LCO) remains dominant for portable electronic applications. Although its theoretical capacity (274 mAh g-1 ) cannot be achieved in Li cells, high capacity (≤240 mAh g-1 ) can be obtained by raising the charging voltage up to 4.6 V. Unfortunately, charging Li-LCO cells to high potentials induces surface and structural instabilities that result in rapid degradation of cells containing LCO cathodes. Yet, significant stabilization is achieved by surface coatings that promote formation of robust passivation films and prevent parasitic interactions between the electrolyte solutions and the cathodes particles. In the search for effective coatings, the authors propose RbAlF4 modified LCO particles. The coated LCO cathodes demonstrate enhanced capacity (>220 mAh g-1 ) and impressive retention of >80/77% after 500/300 cycles at 30/45 °C. A plausible mechanism that leads to the superior stability is proposed. Finally the authors demonstrate that the main reason for the degradation of 4.6 V cells is the instability of the anode side rather than the failure of the coated cathodes.

4.
ACS Appl Mater Interfaces ; 13(39): 46478-46487, 2021 Oct 06.
Artículo en Inglés | MEDLINE | ID: mdl-34569238

RESUMEN

A key issue in the development of sustainable Na-ion batteries (NIBs) is the stability of the electrolyte solution and its ability to form effective passivation layers on both cathode and anode. In this regard, the use of fluorine-based additives is considered a promising direction for improving electrode performance. Fluoroethylene carbonate (FEC) and trans-difluoroethylene carbonate (DFEC) were demonstrated as additives or cosolvents that form effective passivating surface films in Li-ion batteries. Their effect is evaluated for the first time with cathodes in NIBs. By application of systematic electrochemical and postmortem investigations, the role of fluorinated additives in the good performance of Na0.44MnO2 (NMO) cathodes was deciphered. Despite the significant improvement in the performance of Li-ion cells enabled by the use of FEC and FEC + DFEC, the highest stability for NIBs was observed when only FEC was used as an additive. Mechanistic insights and analytical characterizations were carried out to shed light on the inferior effect of FEC + DFEC in NIBs, in contrast to its positive effect on the stability of Li-ion batteries.

5.
ACS Appl Mater Interfaces ; 9(4): 3677-3685, 2017 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-28071045

RESUMEN

Novel Bi2Te3/graphene quantum dots (Bi2Te3/GQDs) hybrid nanosheets with a unique structure that GQDs are homogeneously embedded in the Bi2Te3 nanosheet matrix have been synthesized by a simple solution-based synthesis strategy. A significantly reduced thermal conductivity and enhanced powder factor are observed in the Bi2Te3/GQDs hybrid nanosheets, which is ascribed to the optimized thermoelectric transport properties of the Bi2Te3/GQDs interface. Furthermore, by varying the size of the GQDs, the thermoelectric performance of Bi2Te3/GQDs hybrid nanostructures could be further enhanced, which could be attributed to the optimization of the density and dispersion manner of the GQDs in the Bi2Te3 matrix. A maximum ZT of 0.55 is obtained at 425 K for the Bi2Te3/GQDs-20 nm, which is higher than that of Bi2Te3 without hybrid nanostrucure. This work provides insights for the structural design and synthesis of Bi2Te3-based hybrid thermoelectric materials, which will be important for future development of broadly functional material systems.

6.
Sci Rep ; 6: 29534, 2016 07 08.
Artículo en Inglés | MEDLINE | ID: mdl-27390070

RESUMEN

Although graphene is a typical two dimensional materials, it has converted to multi-dimensional materials with many unique properties. As an example, the one dimensional graphene fiber is fabricated by utilizing ionic liquid as coagulation and functional diamines as cross-linkers to connect graphene oxide layers. The fibers show excellent mechanical properties and superior electrical performance. The tensile strength of the resultant fibers reaches ~729 MPa after a super high temperature thermal annealing treatment at 2800 °C. Additionally, quasi-solid-state flexible micro-capacitors are fabricated with promising result on energy storage. The device show a specific volumetric capacity as high as ~225 F/cm(3) (measured at 103.5 mA cm(-3) in a three-electrode cell), as well as a long cycle life of 2000 times. The initial results indicate that these fibers will be a good candidate to replace energy storage devices for miniaturized portable electronic applications.

7.
Nanoscale Res Lett ; 10: 55, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-25852352

RESUMEN

We demonstrated one-step method to fabricate two different sizes of graphene quantum dots (GQDs) through chemical cutting from graphene oxide (GO), which had many advantages in terms of simple process, low cost, and large scale in manufacturing with higher production yield comparing to the reported methods. Several analytical methods were employed to characterize the composition and morphology of the resultants. Bright blue luminescent GQDs were obtained with a produced yield as high as 34.8%. Moreover, how the different sizes affect fluorescence wavelength mechanism was investigated in details.

8.
Nanoscale Res Lett ; 10: 192, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-25977663

RESUMEN

We reported a simple and effective way of fabricating one-dimensional (1D) graphene oxide nanoscrolls (GONS) from graphene oxide (GO) sheets through shock cooling by liquid nitrogen. The corresponding mechanism of rolling was proposed. One possibility is the formation of ice crystals during the shock cooling process in liquid nitrogen to be the driving force. The other might be due to the uneven stress of the sheets inside or outside ice during the lyophilization. After reducing, graphene nanoscrolls (GNS) exhibited good structural stability, high specific surface area, and high specific capacitance. The capacitance properties were investigated by cyclic voltammetry, galvanostatic charge-discharge, and electrical impedance spectroscopy. A specific capacity of 156 F/g for the GNS at the current density of 1.0 A/g was obtained comparing with the specific capacity of 108 F/g for graphene sheets. Those results indicated that GNS-based rolling structure could be a kind of promising electrode material for supercapacitors and batteries.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA