Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Int Immunopharmacol ; 138: 112514, 2024 Sep 10.
Artículo en Inglés | MEDLINE | ID: mdl-38943974

RESUMEN

Idiopathic pulmonary fibrosis (IPF) is considered to be associated with aging. Both ER stress and the unfolded protein response (UPR) have been associated with pulmonary fibrosis via key mechanisms including AEC apoptosis, EMT, altered myofibroblast differentiation, and M2 macrophage polarization. A relationship between ER stress and aging has also been demonstrated in vitro, with increased p16 and p21 levels seen in lung epithelial cells of older IPF patients. The mechanism underlying ER stress regulation of IPF fibroblasts is still unclear. In this study, we aimed to delineate ER stress regulation in IPF-derived fibroblasts. Here, we found that ER stress markers (p-eIF2α, p-IREα, ATF6) and fibrosis markers (α-SMA and Collagen-I) were significantly increased in lung tissues of IPF patients and bleomycin-induced mouse models. Notably, the expression of PGC-1α was decreased in fibroblasts. In vivo experiments were designed using an AAV-6 vector mediated conditional PGC-1α knockout driven by a specific α-SMA promoter. Ablation of PGC-1α expression in fibroblasts promoted ER stress and supported the development of pulmonary fibrosis in a bleomycin-induced mouse model. In another experimental group, mice with conditional knockout of PGC-1α in fibroblasts and injected intraperitoneally with 4-PBA (an endoplasmic reticulum stress inhibitor) were protected from lung fibrosis. We further constructed an AAV-6 vector mediated PGC-1α overexpression model driven by a specific Collagen-I promoter. Overexpression of PGC-1α in fibroblasts suppressed ER stress and attenuated development of pulmonary fibrosis in bleomycin-induced mouse models. Taken together, this study identified PGC-1α as a promising target for developing novel therapeutic options for the treatment of lung fibrosis.


Asunto(s)
Bleomicina , Estrés del Retículo Endoplásmico , Fibroblastos , Fibrosis Pulmonar Idiopática , Coactivador 1-alfa del Receptor Activado por Proliferadores de Peroxisomas gamma , Fenilbutiratos , Animales , Femenino , Humanos , Masculino , Ratones , Células Cultivadas , Modelos Animales de Enfermedad , Fibroblastos/metabolismo , Fibrosis Pulmonar Idiopática/patología , Fibrosis Pulmonar Idiopática/metabolismo , Pulmón/patología , Ratones Endogámicos C57BL , Ratones Noqueados , Coactivador 1-alfa del Receptor Activado por Proliferadores de Peroxisomas gamma/metabolismo , Coactivador 1-alfa del Receptor Activado por Proliferadores de Peroxisomas gamma/genética , Fenilbutiratos/farmacología
2.
Theriogenology ; 229: 16-22, 2024 Aug 10.
Artículo en Inglés | MEDLINE | ID: mdl-39142066

RESUMEN

Spermatogenesis in eukaryotes is a process that occurs within a very narrow temperature threshold, typically not exceeding 36 °C. SPO11 was isolated from the temperature-sensitive mutant receptor of Saccharomyces cerevisiae and is thought to be the only protein that functions during meiosis. This suggested that SPO11 may be the key protein that influenced the temperature of spermatogenesis not exceeding 36 °C. Elevated temperatures typically damage the spermatogenic cells. Birds have a core body temperature of 41-42 °C, and their testis are located inside their bodies, providing an alternative perspective to investigate the potential impact of temperature threshold on spermatogenesis. The objective of this study was to ascertain whether elevated ambient temperatures affect spermatogenesis in birds and whether SPO11 is the key gene affecting the temperature threshold for spermatogenesis. STRA8, SCP3, SPO11, γ-H2AX, and RAD51 were all crucial components in the process of meiotic initiation, synapsis, DNA double-strand break (DSB) induction, homologous chromosome crossover recombination, and repair of DSB. In this study, 39-day-old Japanese quail were subjected to heat stress (HS) at 38 °C for 8 h per day for 3 (3d HS) and 13 (13d HS) consecutive days and analyzed the expression of meiotic signaling molecules (STRA8, SCP3, SPO11, γ-H2AX, and RAD51) using molecular biology techniques, including Immunohistochemistry (IHC), Western Blot (WB), and Real-time Quantitative Polymerase Chain Reaction (qRT-PCR). We found that spermatogenesis was normal in both groups exposed to HS. Meiotic signaling molecules were expressed normally in the 3d HS group. All detected signaling molecules were normally expressed in the 13d HS group, except for SPO11, which showed a significant increase in expression, indicating that SPO11 was temperature-sensitive. We examined the localized expression of each meiotic signaling molecule in quail testis, explored the temperature sensitivity of SPO11, and determined that quail testis can undergo normal spermatogenesis at ambient temperatures exceeding 36 °C. This study concluded that SPO11 is not the key protein influencing spermatogenesis in birds. These findings enhance our understanding of avian spermatogenesis.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA