Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 89
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Cell ; 187(6): 1422-1439.e24, 2024 Mar 14.
Artículo en Inglés | MEDLINE | ID: mdl-38447573

RESUMEN

Neutrophils, the most abundant and efficient defenders against pathogens, exert opposing functions across cancer types. However, given their short half-life, it remains challenging to explore how neutrophils adopt specific fates in cancer. Here, we generated and integrated single-cell neutrophil transcriptomes from 17 cancer types (225 samples from 143 patients). Neutrophils exhibited extraordinary complexity, with 10 distinct states including inflammation, angiogenesis, and antigen presentation. Notably, the antigen-presenting program was associated with favorable survival in most cancers and could be evoked by leucine metabolism and subsequent histone H3K27ac modification. These neutrophils could further invoke both (neo)antigen-specific and antigen-independent T cell responses. Neutrophil delivery or a leucine diet fine-tuned the immune balance to enhance anti-PD-1 therapy in various murine cancer models. In summary, these data not only indicate the neutrophil divergence across cancers but also suggest therapeutic opportunities such as antigen-presenting neutrophil delivery.


Asunto(s)
Presentación de Antígeno , Neoplasias , Neutrófilos , Animales , Humanos , Ratones , Antígenos de Neoplasias , Leucina/metabolismo , Neoplasias/inmunología , Neoplasias/patología , Neutrófilos/metabolismo , Linfocitos T , Análisis de Expresión Génica de una Sola Célula
2.
Immunity ; 47(6): 1114-1128.e6, 2017 12 19.
Artículo en Inglés | MEDLINE | ID: mdl-29221730

RESUMEN

CD4+ T cells orchestrate immune responses and destruction of allogeneic organ transplants, but how this process is regulated on a transcriptional level remains unclear. Here, we demonstrated that interferon regulatory factor 4 (IRF4) was a key transcriptional determinant controlling T cell responses during transplantation. IRF4 deletion in mice resulted in progressive establishment of CD4+ T cell dysfunction and long-term allograft survival. Mechanistically, IRF4 repressed PD-1, Helios, and other molecules associated with T cell dysfunction. In the absence of IRF4, chromatin accessibility and binding of Helios at PD-1 cis-regulatory elements were increased, resulting in enhanced PD-1 expression and CD4+ T cell dysfunction. The dysfunctional state of Irf4-deficient T cells was initially reversible by PD-1 ligand blockade, but it progressively developed into an irreversible state. Hence, IRF4 controls a core regulatory circuit of CD4+ T cell dysfunction, and targeting IRF4 represents a potential therapeutic strategy for achieving transplant acceptance.


Asunto(s)
Linfocitos T CD4-Positivos/inmunología , Rechazo de Injerto/inmunología , Supervivencia de Injerto , Trasplante de Corazón , Factores Reguladores del Interferón/inmunología , Animales , Linfocitos T CD4-Positivos/patología , Linfocitos T CD8-positivos/inmunología , Linfocitos T CD8-positivos/patología , Diferenciación Celular , Movimiento Celular , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/inmunología , Perfilación de la Expresión Génica , Regulación de la Expresión Génica , Rechazo de Injerto/genética , Rechazo de Injerto/mortalidad , Rechazo de Injerto/patología , Granzimas/genética , Granzimas/inmunología , Factores Reguladores del Interferón/deficiencia , Factores Reguladores del Interferón/genética , Interferón gamma/genética , Interferón gamma/inmunología , Interleucina-17/genética , Interleucina-17/inmunología , Ratones , Ratones Endogámicos BALB C , Ratones Endogámicos C57BL , Ratones Noqueados , Proteínas Citotóxicas Formadoras de Poros/genética , Proteínas Citotóxicas Formadoras de Poros/inmunología , Receptor de Muerte Celular Programada 1/genética , Receptor de Muerte Celular Programada 1/inmunología , Transducción de Señal , Análisis de Supervivencia , Factores de Transcripción/genética , Factores de Transcripción/inmunología , Trasplante Homólogo
3.
Immunity ; 44(6): 1271-83, 2016 06 21.
Artículo en Inglés | MEDLINE | ID: mdl-27317259

RESUMEN

T helper 17 (Th17) cells are prominently featured in multiple autoimmune diseases, but the regulatory mechanisms that control Th17 cell responses are poorly defined. Here we found that stimulation of OX40 triggered a robust chromatin remodeling response and produced a "closed" chromatin structure at interleukin-17 (IL-17) locus to inhibit Th17 cell function. OX40 activated the NF-κB family member RelB, and RelB recruited the histone methyltransferases G9a and SETDB1 to the Il17 locus to deposit "repressive" chromatin marks at H3K9 sites, and consequently repressing IL-17 expression. Unlike its transcriptional activities, RelB acted independently of both p52 and p50 in the suppression of IL-17. In an experimental autoimmune encephalomyelitis (EAE) disease model, we found that OX40 stimulation inhibited IL-17 and reduced EAE. Conversely, RelB-deficient CD4(+) T cells showed enhanced IL-17 induction and exacerbated the disease. Our data uncover a mechanism in the control of Th17 cells that might have important clinic implications.


Asunto(s)
Ensamble y Desensamble de Cromatina , Encefalomielitis Autoinmune Experimental/inmunología , Interleucina-17/metabolismo , Esclerosis Múltiple/inmunología , Receptores OX40/metabolismo , Linfocitos T Reguladores/inmunología , Células Th17/inmunología , Animales , Células Cultivadas , Regulación hacia Abajo , Factores de Transcripción Forkhead/metabolismo , N-Metiltransferasa de Histona-Lisina/genética , N-Metiltransferasa de Histona-Lisina/metabolismo , Histonas/metabolismo , Humanos , Interleucina-17/genética , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Receptores OX40/genética , Transducción de Señal , Factor de Transcripción ReIB/genética , Factor de Transcripción ReIB/metabolismo
4.
Crit Rev Eukaryot Gene Expr ; 34(1): 41-53, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-37824391

RESUMEN

Histone acetylation that controlled by two mutually antagonistic enzyme families, histone acetyl transferases (HATs) and histone deacetylases (HDACs), as one of major epigenetic mechanisms controls transcription and its abnormal regulation was implicated in various aspects of cancer. However, the comprehensive understanding of HDACs and HATs in cancer is still lacking. Systematically analysis through 33 cancer types based on next-generation sequence data reveals heterogeneous expression pattern of HDACs and HATs across different cancer types. In particular, HDAC10 and HDAC6 show significant downregulation in most cancers. Principal components analysis (PCA) of pan-cancer reveals significant difference of HDACs and HATs between normal tissues and normal tissue adjacent to the tumor. The abnormal expression of HDACs and HATs was partially due to CNV and DNA methylation in multiple types of cancer. Prognostic significance (AUC reached 0.736) of HDACs and HATs demonstrates a five-gene signature including KAT2A, HAT1, KAT5, CREBBP and SIRT1 in KIRC. Analysis of NCI-60 drug database reveals the cytotoxic effect of several drugs are associated with dysregulated expression of HDACs and HATs. Analysis of immune infiltration and immunotherapy reveals that KAT2B and HDAC9 are associated with immune infiltration and immunotherapy. Our analysis provided comprehensive understanding of the regulation and implication of HDACs and HATs in pan-cancer. These findings provide novel evidence for biological investigating potential individual HDACs and HATs in the development and therapy of cancer in the future.


Asunto(s)
Histonas , Neoplasias , Humanos , Histonas/metabolismo , Inhibidores de Puntos de Control Inmunológico/uso terapéutico , Transferasas/metabolismo , Transferasas/uso terapéutico , Neoplasias/tratamiento farmacológico , Neoplasias/genética , Histona Desacetilasas/genética , Histona Acetiltransferasas/genética , Histona Acetiltransferasas/metabolismo , Histona Acetiltransferasas/uso terapéutico
5.
Cell Biochem Funct ; 42(4): e4031, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38760985

RESUMEN

Super-enhancers play prominent roles in driving robust pathological gene expression, but they are hidden in human genome at noncoding regions, making them difficult to explore. Leukemia inhibitory factor (LIF) is a multifunctional cytokine crucially involved in acute respiratory distress syndrome (ARDS) and lung cancer progression. However, the mechanisms governing LIF regulation in disease contexts remain largely unexplored. In this study, we observed elevated levels of LIF in the bronchoalveolar lavage fluid (BALF) of patients with sepsis-related ARDS compared to those with nonsepsis-related ARDS. Furthermore, both basal and LPS-induced LIF expression were under the control of super-enhancers. Through analysis of H3K27Ac ChIP-seq data, we pinpointed three potential super-enhancers (LIF-SE1, LIF-SE2, and LIF-SE3) located proximal to the LIF gene in cells. Notably, genetic deletion of any of these three super-enhancers using CRISPR-Cas9 technology led to a significant reduction in LIF expression. Moreover, in cells lacking these super-enhancers, both cell growth and invasion capabilities were substantially impaired. Our findings highlight the critical role of three specific super-enhancers in regulating LIF expression and offer new insights into the transcriptional regulation of LIF in ARDS and lung cancer.


Asunto(s)
Factor Inhibidor de Leucemia , Neoplasias Pulmonares , Síndrome de Dificultad Respiratoria , Humanos , Síndrome de Dificultad Respiratoria/metabolismo , Síndrome de Dificultad Respiratoria/genética , Síndrome de Dificultad Respiratoria/patología , Factor Inhibidor de Leucemia/metabolismo , Factor Inhibidor de Leucemia/genética , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/patología , Líquido del Lavado Bronquioalveolar/química , Elementos de Facilitación Genéticos , Proliferación Celular , Masculino
6.
BMC Biol ; 21(1): 75, 2023 04 07.
Artículo en Inglés | MEDLINE | ID: mdl-37024934

RESUMEN

BACKGROUND: Angiogenesis plays important roles in physiological and pathologic conditions, but the mechanisms underlying this complex process often remain to be elucidated. In recent years, liquid-liquid phase separation (LLPS) has emerged as a new concept to explain many cellular functions and diseases. However, whether LLPS is involved in angiogenesis has not been studied until now. Here, we investigated the potential role of LLPS in angiogenesis and endothelial function. RESULTS: We found 1,6-hexanediol (1,6-HD), an inhibitor of LLPS, but not 2,5-hexanediol (2,5-HD) dramatically decreases neovascularization of Matrigel plug and angiogenesis response of murine corneal in vivo. Moreover, 1,6-HD but not 2,5-HD inhibits microvessel outgrowth of aortic ring and endothelial network formation. The endothelial function of migration, proliferation, and cell growth is suppressed by 1,6-HD. Global transcriptional analysis by RNA-sequencing reveals that 1,6-HD specifically blocks cell cycle and downregulates cell cycle-related genes including cyclin A1. Further experimental data show that 1,6-HD treatment greatly reduces the expression of cyclin A1 but with minimal effect on cyclin D1, cyclin E1, CDK2, and CDK4. The inhibitory effect of 1,6-HD on cyclin A1 is mainly through transcriptional regulation because proteasome inhibitors fail to rescue its expression. Furthermore, overexpression of cyclin A1 in HUVECs largely rescues the dysregulated tube formation upon 1,6-HD treatment. CONCLUSIONS: Our data reveal a critical role of LLPS inhibitor 1,6-HD in angiogenesis and endothelial function, which specifically affects endothelial G1/S transition through transcriptional suppression of CCNA1, implying LLPS as a possible novel player to modulate angiogenesis, and thus, it might represent an interesting therapeutic target to be investigated in clinic angiogenesis-related diseases in future.


Asunto(s)
Ciclina A1 , Neovascularización Patológica , Humanos , Ratones , Animales , Ciclina A1/metabolismo , Células Endoteliales de la Vena Umbilical Humana/metabolismo , Movimiento Celular , Neovascularización Patológica/genética , Neovascularización Patológica/metabolismo , Proliferación Celular
7.
Cell Biochem Funct ; 40(5): 501-515, 2022 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-35670653

RESUMEN

The unique morphology and gene expression of podocytes are critical for kidney function, and their abnormalities lead to nephropathies such as diabetic nephropathy and membranous nephropathy. Podocytes cultured in vitro are valuable tools to dissect the molecular mechanism of podocyte injury relative to nephropathy, however, these models have never been comprehensively compared. Here, we comprehensively compared the morphology, cytoskeleton, cell adhesion, cell spreading, cell migration, and lipid metabolism under five commonly used in vitro models including lipopolysaccharide (LPS), puromycin aminonucleoside (PAN), doxorubicin (Dox), high glucose, and glucose deprivation. Our results indicate that all stimulations significantly downregulate the expression of synaptopodin both in human and mouse podocytes. All stimulations affect podocyte morphology but show different intensity and phenotypes. In general, the five stimulations reduce cell adhesion, cell spreading, and cell migration, but the effect in human and mouse podocytes is slightly different. Human podocytes show high expression of genes enriched in the pentose phosphate pathway. Dox and PAN treatment show a strong effect on gene expression in lipid metabolism, while the other three stimulations show minimal effect. The expression of phospholipase A2 receptor (PLA2R1) and type-1 domain-containing protein 7 A (THSD7A) show opposite trends in given cells. Stimulations can dramatically affect the expression of PLA2R1 and THSD7A. Inhibition of super-enhancers reduces PLA2R1 and THSD7A expression, but ERK inhibition enhances their expression. Our results demonstrate distinctive responses in five commonly used in vitro podocyte injury models and the dynamic expression of PLA2R1 and THSD7A, which supply novel information to select suitable podocyte injury models.


Asunto(s)
Podocitos , Receptores de Fosfolipasa A2 , Trombospondinas , Animales , Autoanticuerpos/metabolismo , Glomerulonefritis Membranosa/metabolismo , Glucosa/metabolismo , Glucosa/farmacología , Humanos , Ratones , Podocitos/metabolismo , Receptores de Fosfolipasa A2/metabolismo , Trombospondinas/metabolismo
8.
Cell Biochem Funct ; 40(4): 379-390, 2022 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-35411950

RESUMEN

Activated B-cell-like (ABC)-diffuse large B-cell lymphoma (ABC-DLBCL) is a common subtype of non-Hodgkin's lymphoma with poor prognosis. The survival of ABC-DLBCL relies on constitutive activation of BCR signaling, but the underlying molecular mechanism is not fully addressed. By mining The Cancer Genome Atlas database, we found that the expression of ubiquitin-specific protease 7 (USP7) is significantly elevated in three cancer types including DLBCL. Interestingly, unlike germinal center B-cell-like (GCB)-DLBCL, ABC-DLBCL shows upregulated expression of USP7. Inhibiting the enzymatic activity of USP7 (P22077) has a drastic effect on ABC-DLBCL, but not GCB-DLBCL cells. Compared to GCB-DLBCL, ABC-DLBCL cells show transcriptional upregulation of multiple components of BCR-signaling. USP7 inhibition significantly reduces the expression of upregulated components of BCR signaling. Mechanistically, USP7 inhibition greatly reduces the methylation of histone 3 on lysine 4 (H3K4me2), which is an epigenetic marker for active enhancers. USP7 inhibition greatly reduces the protein level of WDR5 and MLL2, key components of lysine-specific methyltransferase complex (complex of proteins associated with Set1 [COMPASS]). In ABC-DLBCL cells, USP7 stabilizes WDR5 and MLL2. In patients, the expression of USP7 is significantly associated with components of BCR signaling (LYN, SYK, BTK, PLCG2, PRKCB, MALT1, BCL10, and CARD11) and targets of BCR signaling (MYC and IRF4). In summary, we demonstrated an essential role of USP7 in ABC-DLBCL by organizing an oncogenic epigenetic program via stabilization of WDR5 and MLL2. Targeting USP7 might be a novel and efficient approach to treat patients with ABC-DLBCL and it might be better than targeting individual components such as BTK in BCR signaling.


Asunto(s)
Proteínas de Unión al ADN/metabolismo , Epigénesis Genética , Péptidos y Proteínas de Señalización Intracelular , Linfoma de Células B Grandes Difuso , Proteínas de Neoplasias/metabolismo , Peptidasa Específica de Ubiquitina 7/metabolismo , Línea Celular Tumoral , Humanos , Péptidos y Proteínas de Señalización Intracelular/genética , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Linfoma de Células B Grandes Difuso/genética , Linfoma de Células B Grandes Difuso/patología , Lisina/genética , Lisina/metabolismo
9.
J Cell Mol Med ; 24(11): 6008-6014, 2020 06.
Artículo en Inglés | MEDLINE | ID: mdl-32306539

RESUMEN

Liver fibrosis is a serious chronic disease that developed by a coordinated interplay of many cell types, but the underlying signal transduction in individual cell type remains to be characterized. Nuclear factor-κB (NF-κB) is a widely accepted central player in the development of hepatic fibrosis. However, the precise role of each member of NF-κB in different cell type is unclear. Here, we generated a mouse model (RelbΔhep ) with hepatocyte-specific deletion of RelB, a member of NF-κB family. RelbΔhep mice born normally and appear normal without obvious abnormality. However, in the CCl4-induced liver fibrosis, RelbΔhep mice developed less severe disease compared with wide-type (WT) mice. The denaturation and necrosis of hepatocytes as well as the formation of false lobules in RelbΔhep mice were significantly reduced compared with WT mice. The production of α-SMA and the level of collagen I and Collagen III were greatly reduced in RelbΔhep mice comparing with WT mice. Furthermore, in patients with liver fibrosis, RelB is up-regulated along with the stage of diseases. Consistently, CCl4 treatment could up-regulate the expression of RelB as well as inflammatory cytokines such as IL-6 and TGF-ß1 in hepatoma cell as well as in WT mice. Knockdown the expression of RelB in hepatoma cells greatly reduced the expression of CCl4-induced inflammatory cytokines. In summary, we provide the genetic evidence to demonstrate the critical and hepatocellular role of RelB in liver fibrosis. RelB is an important transcription factor to drive the expression of inflammatory cytokines in the initiation phase of injury.


Asunto(s)
Citocinas/metabolismo , Mediadores de Inflamación/metabolismo , Inflamación/metabolismo , Inflamación/patología , Cirrosis Hepática/metabolismo , Cirrosis Hepática/patología , Factor de Transcripción ReIB/metabolismo , Animales , Tetracloruro de Carbono , Matriz Extracelular/metabolismo , Células Estrelladas Hepáticas/metabolismo , Células Estrelladas Hepáticas/patología , Hepatocitos/metabolismo , Hepatocitos/patología , Ratones Endogámicos C57BL , Ratones Noqueados , Especificidad de Órganos , Regulación hacia Arriba/genética
10.
Int J Cancer ; 147(8): 2210-2224, 2020 10 15.
Artículo en Inglés | MEDLINE | ID: mdl-32573785

RESUMEN

Enhancer can transcribe RNAs, however, most of them were neglected in traditional RNA-seq analysis workflow. Here, we developed a Pipeline for Enhancer Transcription (PET, http://fun-science.club/PET) for quantifying enhancer RNAs (eRNAs) from RNA-seq. By applying this pipeline on lung cancer samples and cell lines, we showed that the transcribed enhancers are enriched with histone marks and transcription factor motifs (JUNB, Hand1-Tcf3 and GATA4). By training a machine learning model, we demonstrate that enhancers can predict prognosis better than their nearby genes. Integrating the Hi-C, ChIP-seq and RNA-seq data, we observe that transcribed enhancers associate with cancer hallmarks or oncogenes, among which LcsMYC-1 (Lung cancer-specific MYC eRNA-1) potentially supports MYC expression. Surprisingly, a significant proportion of transcribed enhancers contain small protein-coding open reading frames (sORFs) and can be translated into microproteins. Our study provides a computational method for eRNA quantification and deepens our understandings of the DNA, RNA and protein nature of enhancers.


Asunto(s)
Elementos de Facilitación Genéticos/genética , Biosíntesis de Proteínas/genética , Transcripción Genética/genética , Células A549 , Línea Celular Tumoral , Genes myc/genética , Células HeLa , Células Hep G2 , Humanos , Células K562 , Células MCF-7 , Sistemas de Lectura Abierta/genética , ARN/genética , Factores de Transcripción/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA