Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 130
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
FASEB J ; 38(1): e23397, 2024 01.
Artículo en Inglés | MEDLINE | ID: mdl-38149908

RESUMEN

Toxoplasma gondii relies heavily on the de novo pyrimidine biosynthesis pathway for fueling the high uridine-5'-monophosphate (UMP) demand during parasite growth. The third step of de novo pyrimidine biosynthesis is catalyzed by dihydroorotase (DHO), a metalloenzyme that catalyzes the reversible condensation of carbamoyl aspartate to dihydroorotate. Here, functional analyses of TgDHO reveal that tachyzoites lacking DHO are impaired in overall growth due to decreased levels of UMP, and the noticeably growth restriction could be partially rescued after supplementation with uracil or high concentrations of L-dihydroorotate in vitro. When pyrimidine salvage pathway is disrupted, both DHOH35A and DHOD284E mutant strains proliferated much slower than DHO-expressing parasites, suggesting an essential role of both TgDHO His35 and Asp284 residues in parasite growth. Additionally, DHO deletion causes the limitation of bradyzoite growth under the condition of uracil supplementation or uracil deprivation. During the infection in mice, the DHO-deficient parasites are avirulent, despite the generation of smaller tissue cysts. The results reveal that TgDHO contributes to parasite growth both in vitro and in vivo. The significantly differences between TgDHO and mammalian DHO reflect that DHO can be exploited to produce specific inhibitors targeting apicomplexan parasites. Moreover, potential DHO inhibitors exert beneficial effects on enzymatic activity of TgDHO and T. gondii growth in vitro. In conclusion, these data highlight the important role of TgDHO in parasite growth and reveal that it is a promising anti-parasitic target for future control of toxoplasmosis.


Asunto(s)
Parásitos , Toxoplasma , Animales , Ratones , Dihidroorotasa , Pirimidinas/farmacología , Uracilo , Uridina Monofosfato , Mamíferos
2.
Planta ; 260(1): 22, 2024 Jun 07.
Artículo en Inglés | MEDLINE | ID: mdl-38847958

RESUMEN

MAIN CONCLUSION: The SiMBR genes in foxtail millet were identified and studied. Heterologous expression of SiMBR2 in Arabidopsis can improve plant tolerance to drought stress by decreasing the level of reactive oxygen species. Foxtail millet (Setaria italica L.), a C4 crop recognized for its exceptional resistance to drought stress, presents an opportunity to improve the genetic resilience of other crops by examining its unique stress response genes and understanding the underlying molecular mechanisms of drought tolerance. In our previous study, we identified several genes linked to drought stress by transcriptome analysis, including SiMBR2 (Seita.7G226600), a member of the MED25 BINDING RING-H2 PROTEIN (MBR) gene family, which is related to protein ubiquitination. Here, we have identified ten SiMBR genes in foxtail millet and conducted analyses of their structural characteristics, chromosomal locations, cis-acting regulatory elements within their promoters, and predicted transcription patterns specific to various tissues or developmental stages using bioinformatic approaches. Further investigation of the stress response of SiMBR2 revealed that its transcription is induced by treatments with salicylic acid and gibberellic acid, as well as by salt and osmotic stresses, while exposure to high or low temperatures led to a decrease in its transcription levels. Heterologous expression of SiMBR2 in Arabidopsis thaliana enhanced the plant's tolerance to water deficit by reducing the accumulation of reactive oxygen species under drought stress. In summary, this study provides support for exploring the molecular mechanisms associated with drought resistance of SiMBR genes in foxtail millet and contributing to genetic improvement and molecular breeding in other crops.


Asunto(s)
Arabidopsis , Regulación de la Expresión Génica de las Plantas , Proteínas de Plantas , Setaria (Planta) , Estrés Fisiológico , Setaria (Planta)/genética , Setaria (Planta)/fisiología , Setaria (Planta)/efectos de los fármacos , Arabidopsis/genética , Arabidopsis/fisiología , Estrés Fisiológico/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Sequías , Plantas Modificadas Genéticamente , Familia de Multigenes , Regiones Promotoras Genéticas/genética , Especies Reactivas de Oxígeno/metabolismo
3.
Chem Rev ; 122(13): 11604-11674, 2022 07 13.
Artículo en Inglés | MEDLINE | ID: mdl-35653785

RESUMEN

Chitin, a fascinating biopolymer found in living organisms, fulfills current demands of availability, sustainability, biocompatibility, biodegradability, functionality, and renewability. A feature of chitin is its ability to structure into hierarchical assemblies, spanning the nano- and macroscales, imparting toughness and resistance (chemical, biological, among others) to multicomponent materials as well as adding adaptability, tunability, and versatility. Retaining the inherent structural characteristics of chitin and its colloidal features in dispersed media has been central to its use, considering it as a building block for the construction of emerging materials. Top-down chitin designs have been reported and differentiate from the traditional molecular-level, bottom-up synthesis and assembly for material development. Such topics are the focus of this Review, which also covers the origins and biological characteristics of chitin and their influence on the morphological and physical-chemical properties. We discuss recent achievements in the isolation, deconstruction, and fractionation of chitin nanostructures of varying axial aspects (nanofibrils and nanorods) along with methods for their modification and assembly into functional materials. We highlight the role of nanochitin in its native architecture and as a component of materials subjected to multiscale interactions, leading to highly dynamic and functional structures. We introduce the most recent advances in the applications of nanochitin-derived materials and industrialization efforts, following green manufacturing principles. Finally, we offer a critical perspective about the adoption of nanochitin in the context of advanced, sustainable materials.


Asunto(s)
Quitina , Nanoestructuras , Biopolímeros , Quitina/química , Nanoestructuras/química
4.
Foodborne Pathog Dis ; 2024 Aug 12.
Artículo en Inglés | MEDLINE | ID: mdl-39133119

RESUMEN

Toxoplasma gondii is a widespread protozoan parasite approximately infecting one-third of the world population and can cause serious public health problems. In this study, we investigated the protective effect of the attenuated vaccine Pru:Δcdpk2 against acute toxoplasmosis and explored the underlying immune mechanisms of the protection in pigs. The systemic T-cell and natural killer (NK) cell responses were analyzed, including kinetics, phenotype, and multifunctionality (interferon [IFN]-γ, tumor necrosis factor [TNF]-α), and the IFN-γ levels were analyzed in PBMCs. Our results showed that T. gondii-specific antibodies were induced by Pru:Δcdpk2. After challenging with RH, the antibodies were able to respond quickly in the immunized group, and the expression level was significantly higher than that in the unimmunized group. The expression level of IFN-γ significantly increased after vaccination, and the CD3+ γδ-, NK, and CD3+ γδ+ cell subsets also significantly increased. At the same time, functional analysis indicated that these cells were polarized toward a Th1 phenotype, showing the ability to secrete IFN-γ and TNF-α. The CD4+CD8α-T cell population exhibited a higher frequency of IFN-γ+ producing cells compared with the CD4-CD8α+ and CD4+CD8α+ cell populations during the early days of vaccination. Our results indicated that the attenuated vaccine could induce the expression of NK, γδ, and CD3αß cells in pigs, and IFN-γ and TNF-α secreted by these cells are important for resistance to T. gondii infection.

5.
Behav Res Methods ; 2024 Jul 29.
Artículo en Inglés | MEDLINE | ID: mdl-39075247

RESUMEN

To increase early identification and intervention of dyslexia, a prescreening instrument is critical to identifying children at risk. The present work sought to shorten and validate the 30-item Mandarin Dyslexia Screening Behavior Checklist for Primary School Students (the full checklist; Fan et al., , 19, 521-527, 2021). Our participants were 15,522 Mandarin-Chinese-speaking students and their parents, sampled from classrooms in grades 2-6 across regions in mainland China. A machine learning approach (lasso regression) was applied to shorten the full checklist (Fan et al., , 19, 521-527, 2021), constructing grade-specific brief checklists first, followed by a compilation of the common brief checklist based on the similarity across grade-specific checklists. All checklists (the full, grade-specific brief, and common brief versions) were validated and compared with data in our sample and an external sample (N = 114; Fan et al., , 19, 521-527, 2021). The results indicated that the six-item common brief checklist showed consistently high reliability (αs > .82) and reasonable classification performance (about 60% prediction accuracy and 70% sensitivity), comparable to that of the full checklist and all grade-specific brief checklists across our current sample and the external sample from Fan et al., , 19, 521-527, (2021). Our analysis showed that 2.42 (out of 5) was the cutoff score that helped classify children's reading status (children who scored higher than 2.42 might be considered at risk for dyslexia). Our final product is a valid, accessible, common brief checklist for prescreening primary school children at risk for Chinese dyslexia, which can be used across grades and regions in mainland China.

6.
Small ; 19(39): e2300686, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37147774

RESUMEN

Non-equilibrium multiphase systems are formed by mixing two immiscible nanoparticle dispersions, leading to bicontinuous emulsions that template cryogels with interconnected, tortuous channels. Herein, a renewable, rod-like biocolloid (chitin nanocrystals, ChNC) is used to kinetically arrest bicontinuous morphologies. Specifically, it is found that ChNC stabilizes intra-phase jammed bicontinuous systems at an ultra-low particle concentration (as low as 0.6 wt.%), leading to tailorable morphologies. The synergistic effects of ChNC high aspect ratio, intrinsic stiffness, and interparticle interactions produce hydrogelation and, upon drying, lead to open channels bearing dual characteristic sizes, suitably integrated into robust bicontinuous ultra-lightweight solids. Overall, it demonstrates the successful formation of ChNC-jammed bicontinuous emulsions and a facile emulsion templating route to synthesize chitin cryogels that form unique super-macroporous networks.

7.
Chem Biodivers ; 20(2): e202201097, 2023 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-36583710

RESUMEN

A new quinoline alkaloid, 5-hydroxy-6-methoxy-N-methyl-2-phenylquinoline-4-one (1), and seventeen known quinoline alkaloids (2-18) were isolated from the roots of Orixa japonica. The structure of 1 was determined by analysis of spectroscopic data. Among them, compounds 2, 3, and 13 were isolated from this plant for the first time. All isolates were screened for the anti-pathogenic fungi activities, including Rhizoctonia solani, Magnaporthe oryzae, and Phomopsis sp. The results showed that five compounds (4, 8, 10, 11, and 12) exhibited significant anti-pathogenic fungi effects at 50.0 µg/mL. In special, compound 10 exhibited the best antifungal activities toward R. solani and M. oryzae with the IC50 values of 37.86 and 44.72 µM, respectively, better than that of the positive control, hymexazol (IC50 121.21 and 1518.18 µM, respectively). Moreover, eleven new quinoline alkaloids derivatives (12a-12k) were designed and synthesized to investigate the structure-activity relationships (SARs). The SARs analysis indicated that the furo[2,3-b]quinoline skeleton and the methoxy at C-7 (compounds 8, 11, and 12) played a key role for improving the antifungal activities.


Asunto(s)
Alcaloides , Quinolinas , Antifúngicos/farmacología , Estructura Molecular , Relación Estructura-Actividad , Quinolinas/química , Hongos
8.
J Am Chem Soc ; 144(43): 20090-20098, 2022 Nov 02.
Artículo en Inglés | MEDLINE | ID: mdl-36260914

RESUMEN

The first general synthesis of branched tetraenes ([4]dendralenes) involves two or three steps from inexpensive, commodity chemicals. It involves an unprecedented variation on Suzuki-Miyaura cross-coupling, generating two new C-C bonds in a one-flask operation with control of diastereoselectivity. The broad scope of the method is established through the synthesis of more than 60 diversely substituted [4]dendralene molecules, along with substituted buta-1,3-dienes and other [n]dendralenes. [4]Dendralenes are demonstrated to be significantly more kinetically stable than their well-known [3]dendralene counterparts. The first stereoselective synthesis of these compounds is also reported, through the catalyst-controlled generation of both E- and Z-diastereomeric products from the same precursor. Novel, through-conjugated/cross-conjugated hybrid molecules are introduced. The first selective dienophile cycloadditions to substituted [4]dendralenes are reported, thus paving the way for applications in target-oriented synthesis.

9.
Langmuir ; 38(46): 14302-14312, 2022 11 22.
Artículo en Inglés | MEDLINE | ID: mdl-36342842

RESUMEN

Silk fibroin is widely believed to be sustainable, biocompatible, and biodegradable, providing promising features such as carriers to deliver drugs and functional ingredients in food, personal care, and biomedical areas, which are consistent with emulsion characteristics; especially, green, all-natural biopolymer-based stabilizers are in great demand to stabilize Pickering emulsions and match the multifunctional needs for developing ideal materials. Herein, an unprecedented three-dimensional (3D) nanostructure, namely a brush-like silk nanobrush (SNB), is applied as the stabilizer to formulate and stabilize Pickering emulsions. The size and interfacial tension are compared among the SNB, a regenerated silk nanofiber, and a nanowhisker. Additionally, optimization processes are conducted to determine the ideal ultrasonication intensity and SNB concentration required to prepare Pickering emulsions by analyzing the morphology, creaming index, mean oil droplet size, and rheological behavior. The results indicate that an SNB with the characteristic structure and suitable size shows superior potential to form sophisticated and interconnected networks in oil-water interfaces, and is proved to be able to resist creaming at a wide range of concentrations and subsequently stabilize Pickering emulsions from liquid-like emulsions to gel-like emulsions. Additionally, SNB is proved to be biocompatible according to cell experiments, providing a promising alternative in designing all-natural, green, and biocompatible emulsions with the aim of efficiently delivering nutrients or drugs associated with health benefits.


Asunto(s)
Fibroínas , Emulsiones/química , Tamaño de la Partícula , Agua/química , Tensión Superficial
10.
Biomacromolecules ; 23(3): 1314-1325, 2022 03 14.
Artículo en Inglés | MEDLINE | ID: mdl-35148062

RESUMEN

Chitin, a kind of second abundant natural saccharide, has great potential in biomedical applications. Here, chitin nanofibers combined with magnetic nanoparticles, a magnetic hydrogel, was prepared in one step by mixing Fe ions with partially deacetylated chitin nanofibers (DEChNs) and physically coagulating in an ammonia gas bath. The storage modulus of the prepared magnetic DEChN (M-DEChN) hydrogels reached 5507 Pa and could be remolded by adjusting the pH value assisted with an ultrasound treatment. In addition, the M-DEChN hydrogels showed an assignable heating behavior in alternating electromagnetic fields (AMFs), and the temperature of the M-DEChN was adjustable by controlling the content of magnetic particles inside. Benefiting from the remote heating ability, the biocompatible magnetic hydrogel showed thermoablation ability to osteosarcoma cells both in vitro and in vivo. These kinds of M-DEChN hydrogels show great application prospects in killing cancer cells.


Asunto(s)
Hidrogeles , Osteosarcoma , Amoníaco , Quitina/química , Humanos , Hidrogeles/química , Fenómenos Magnéticos , Osteosarcoma/tratamiento farmacológico
11.
Nanotechnology ; 33(25)2022 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-35290967

RESUMEN

Arrays of gold-silver (Au-Ag) bimetallic nanopillars were fabricated by a newly developed surface-plasmon lithography (SPL) and their enhancement properties as surface-enhanced Raman scattering (SERS) substrates have been studied. We demonstrated that the SPL is a low-cost and high efficiency method for the fabrication of SERS substrates with both high sensitivity and reproducibility. The nanopillars showed a good response in the detection of methylene blue molecules at a low concentration of 1.0 × 10-11mol· l-1. The SERS enhancement factors (EFs) are on the orders of 107and the relative standard deviation of SERS intensity is <8% over an area of 50µm × 50µm. The EFs increase fast with the height increasing from 200 to 530 nm, then increase slowly when further increase the height of the nanopillars to 1100 nm. In addition, the Au-Ag bimetallic coating has shown much higher SERS enhancement than the coatings of either the pure Au or Ag. The excellent SERS enhancement and reproducibility of the Au-Ag coated nanopillars indicated that the fabricated SERS substrates can be used for the detection of biochemical molecules at trace level and the SPL is a promising method for fabrication of SERS substrates.

12.
J Nanobiotechnology ; 20(1): 171, 2022 Mar 31.
Artículo en Inglés | MEDLINE | ID: mdl-35361237

RESUMEN

BACKGROUND: Budding yeast, Saccharomyces cerevisiae, has been extensively favored as a model organism in aging and age-related studies, thanks to versatile microfluidic chips for cell dynamics assay and replicative lifespan (RLS) determination at single-cell resolution. However, previous microfluidic structures aiming to immobilize haploid yeast may impose excessive spatial constraint and mechanical stress on cells, especially for larger diploid cells that sprout in a bipolar pattern. RESULTS: We developed a high-throughput microfluidic chip for diploid yeast long-term culturing (DYLC), optical inspection and cell-aging analysis. The DYLC chip features 1100 "leaky bowl"-shaped traps formatted in an array to dock single cells under laminar-perfused medium and effectively remove daughter cells by hydraulic shear forces. The delicate microstructures of cell traps enable hydrodynamic rotation of newborn buds, so as to ensure bud reorientation towards downstream and concerted daughter dissection thereafter. The traps provide sufficient space for cell-volume enlargement during aging, and thus properly alleviate structural compression and external stress on budding yeast. Trapping efficiency and long-term maintenance of single cells were optimized according to computational fluid dynamics simulations and experimental characterization in terms of critical parameters of the trap and array geometries. Owing to the self-filling of daughter cells dissected from traps upstream, an initial trapping efficiency of about 70% can rapidly reach a high value of over 92% after 4-hour cell culturing. During yeast proliferation and aging, cellular processes of growth, budding and daughter dissection were continuously tracked for over 60 h by time-lapse imaging. Yeast RLS and budding time interval (BTI) were directly calculated by the sequential two-digit codes indicating the budding status in images. With the employed diploid yeast strain, we obtained an RLS of 24.29 ± 3.65 generations, and verified the extension of BTI in the first couple of generations after birth and the last several generations approaching death, as well as cell de-synchronization along diploid yeast aging. CONCLUSIONS: The DYLC chip offers a promising platform for reliable capture and culturing of diploid yeast cells and for life-long tracking of cell dynamics and replicative aging processes so that grasping comprehensive insights of aging mechanism in complex eukaryotic cells.


Asunto(s)
Microfluídica , Saccharomyces cerevisiae , División Celular , Diploidia , Humanos , Recién Nacido , Longevidad , Microfluídica/métodos
13.
World J Surg Oncol ; 20(1): 22, 2022 Jan 22.
Artículo en Inglés | MEDLINE | ID: mdl-35065633

RESUMEN

BACKGROUND: PDZ-binding kinase (PBK) encodes a serine/threonine protein kinase related to the dual specific mitogen-activated protein kinase kinase (MAPKK) family. There is evidence that overexpression of this gene is associated with tumorigenesis. However, the role of PBK in hepatocellular carcinoma (HCC) remains unclear. Therefore, we evaluated the prognostic role of PBK and its correlation with immune infiltrates in hepatocellular carcinoma. METHODS: The expression of PBK in pan-cancers was studied by Onconmine and TIMER. The expression of PBK in HCC patients and its relationship with clinicopathological characteristics were analyzed using The Gene Expression Profiling Interactive Analysis (GEPIA), The human protein atlas database (HPA), The Cancer Genome Atlas (TCGA), and Gene Expression Omnibus (GEO) databases. Receiver operating characteristic (ROC) curve was used to determine the diagnostic value of PBK in HCC patients. The relationship between PBK and prognosis of HCC was performed by GEPIA and Kaplan Meier plotter web tool. The correlations between the clinical characteristics and overall survival were analyzed by Univariate Cox regression and Multivariate Cox hazards regression to identify possible prognostic factors for HCC patients. LinkedOmics was applied to investigate co-expression associated with PBK and to analyze Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways. The network map of PBK and related genes is constructed by GeneMANIA. Finally, TIMER and TISIDB were used to analyze the correlations between PBK and tumor-infiltrating immune cells. RESULTS: Multiple database analysis shows that PBK was highly expressed in many types of tumors, including hepatocellular carcinoma, and was significantly related to tumor stage (P=0.0089), age (P=0.0131), and race (P=0.0024) of HCC patients. The receiver operating characteristic (ROC) curve analysis showed that PBK had high diagnostic potential to HCC in GSE76427 (AUC=0.8799), GSE121248 (AUC=0.9224), GSE62232 (AUC=0.9975), and GSE84402 (AUC=0.9541). Multivariate Cox hazards regression showed that high expression of PBK may be an independent risk factor for overall survival in HCC patients (HR = 1.566, 95% CI=1.062-2.311, P= 0.024). The Protein-protein interaction network showed that PBK significantly interacted with LRRC47, ARAF, LGALS9B, TTK, DLG1, and other essential genes. Furthermore, enrichment analysis showed that PBK and co-expressed genes participated in many biological processes, cell composition, molecular functions, and pathways in HCC. Finally, the immune infiltration analysis by TIMER and TISIDB indicated that a significant tightly correlation between PBK and macrophages, neutrophils, as well as chemokines and receptors. CONCLUSIONS: High expression of PBK is significantly correlated with poor survival and immune infiltrates in hepatocellular carcinoma. Our study suggests that PBK can be used as a biomarker of poor prognosis and potential immune therapy target in hepatocellular carcinoma.


Asunto(s)
Carcinoma Hepatocelular , Neoplasias Hepáticas , Biomarcadores de Tumor/genética , Carcinoma Hepatocelular/genética , Humanos , Neoplasias Hepáticas/genética , Quinasas de Proteína Quinasa Activadas por Mitógenos , Pronóstico
14.
Chem Biodivers ; 19(6): e202200243, 2022 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-35560497

RESUMEN

Three new compounds named cynansteroid A (1), cynansteroid B (2) and cynansteroid C (3), together with nine known C21 -steroidal pregnane sapogenins (4-12) were isolated from the hydrolytic extract of the roots of Cynanchum auriculatum. The structures of cynansteroid A-C (1-3) were ascertained via the detailed analysis of the HR-ESI-MS, 1D and 2D NMR, and the calculated and experimental ECD data of cynansteroid B (2). Compound 11 displayed moderate inhibitory activity toward Verticillium dahliae Kleb (IC50 =37.15 µM), furthermore, compounds 11 and 12 showed significant inhibitory activity against Phomopsis sp. (IC50 =16.49 µM and 17.62 µM, respectively).


Asunto(s)
Cynanchum , Sapogeninas , Cynanchum/química , Glicósidos/química , Raíces de Plantas/química , Pregnanos/química , Pregnanos/farmacología
15.
Angew Chem Int Ed Engl ; 61(39): e202204872, 2022 Sep 26.
Artículo en Inglés | MEDLINE | ID: mdl-35900232

RESUMEN

Diene-transmissive hetero-Diels-Alder sequences involving carbonyl dienophiles are reported for the first time. High enantioselectivities are achieved in the reaction of phenylglyoxal with a broad range of dendralene structures, through the optimization of a Pd2+ catalyst system. The initial catalyst-controlled enantioselective oxa-Diels-Alder (ODA) cycloaddition to a [3]dendralene generates a dihydropyran carrying a semicyclic diene. This participates in a subsequent catalyst or substrate-controlled Diels-Alder reaction to generate sp3 -rich fused polycyclic systems containing both heterocycles and carbocycles. Computational investigations reveal a concerted asynchronous mechanism. π-Complexation of a diene C=C bond to Pd2+ occurs in both the pre-transition state (TS) complex and in cycloaddition TSs, controlling stereoselectivity. A formal enantioselective [4+2]cycloaddition of a CO2 dienophile is demonstrated.

16.
Biochem Biophys Res Commun ; 556: 87-92, 2021 06 04.
Artículo en Inglés | MEDLINE | ID: mdl-33839419

RESUMEN

Virus-induced cytokine storm has been a devastating actuality in clinic. The abnormal production of type I interferon (IFN-1) and upregulation of multiple cytokines induced strong inflammation and thus lead to shock and organ failure. As an E3 ubiquitin ligase, tripartite motif-containing 37 (TRIM37) regulates the ubiquitination of multiple proteins including TRAFs. RNA sequencing was performed to investigated the alteration of transcriptional profile of H1N1-infected patients. qRT-PCR assay was performed to investigate the RNA levels of certain genes. The group of immune cells was examined by the Flow cytometry analysis. H&E staining was applied to evaluate lung inflammation of WT and TRIM37-KO mice. ELISA assay was performed to demonstrate the alteration of multiple cytokines. The protein levels in NF-kB signaling was estimated by western blotting and immunoprecipitation assays were applied to demonstrate the direct interaction between TRIM37 and TRAF-6. The RNA level of TRIM37 decreased in CD11b+ cells of Flu-infected patients. Knockout of TRIM37 inhibited the immune responses of H1N1-infected mice. TRIM37 deficiency reduced the levels of virous proinflammatory cytokines in bone marrow derived macrophages (BMDMs). Mechanically, TRIM37 promoted the K63-linked ubiquitination of TRAF6. TRIM37 negatively regulated inflammatory responses induced by virus infection via promoting TRAF6 ubiquitination at K63.


Asunto(s)
Inflamación/metabolismo , Infecciones por Orthomyxoviridae/metabolismo , Infecciones por Orthomyxoviridae/virología , Factor 6 Asociado a Receptor de TNF/metabolismo , Proteínas de Motivos Tripartitos/metabolismo , Ubiquitina-Proteína Ligasas/metabolismo , Ubiquitinación , Animales , Femenino , Humanos , Mediadores de Inflamación/antagonistas & inhibidores , Mediadores de Inflamación/inmunología , Subtipo H1N1 del Virus de la Influenza A/inmunología , Gripe Humana/genética , Gripe Humana/inmunología , Gripe Humana/metabolismo , Gripe Humana/virología , Ratones , Ratones Endogámicos C57BL , Infecciones por Orthomyxoviridae/genética , Infecciones por Orthomyxoviridae/inmunología , Factor 6 Asociado a Receptor de TNF/química , Proteínas de Motivos Tripartitos/deficiencia , Proteínas de Motivos Tripartitos/genética , Ubiquitina-Proteína Ligasas/deficiencia , Ubiquitina-Proteína Ligasas/genética
17.
Biomacromolecules ; 22(10): 4373-4382, 2021 10 11.
Artículo en Inglés | MEDLINE | ID: mdl-34477363

RESUMEN

This study proposed an efficient and economical preparation pathway from purified chitin to nanofibers that can be dispersed in full pH surroundings. Recyclable oxalic acid was applied to prepare chitin nanofibers in a mild environment along with concurrent modifications of the carboxylic groups on the surface. Pretreatment with oxalic acid significantly improved the mechanical disintegration of chitin into nanofibers, the length of nanofibers reached ∼1100 nm, and the crystallinity and thermal stability of the chitin were basically unchanged with mild treatment. Oxalic acid can be reused many times with a high recovery of over 91%. Most importantly, the obtained nanofibers can be fabricated into films and hydrogels with certain mechanical properties, which can be redispersed into nanofibers using mild mechanical treatment. This method not only produces nanofibers in a green, reusable system but also provides a reference for the potential application of chitin nanofibers in commercial transportation and wide applicability.


Asunto(s)
Quitina , Nanofibras , Hidrogeles , Concentración de Iones de Hidrógeno , Ácido Oxálico
18.
Connect Tissue Res ; 62(2): 206-214, 2021 03.
Artículo en Inglés | MEDLINE | ID: mdl-32380866

RESUMEN

Purpose: Previous studies have shown that oligodendrocytes and motor neurons have the same progenitors in the ventral spinal cord called spinal cord progenitor cells marked by oligodendrocyte lineage transcription factor 2 (Olig2). However, it is difficult to identify the spinal cord progenitor cell in vitro as they are present transiently and further transform into other neuronal (interneuron) and glial (oligodendrocyte) lineages during development. In the present study, we try to generated Olig2+ spinal cord progenitor cells from human induced neural stem cells (iNSCs) and identify those spinal cord progenitor cells in vitro Materials and Methods: Human peripheral blood mononuclear cells (PBMCs) were converted into induced neural stem cells (iNSCs), after they were identified by immunostaining using neural stem cell markers such as Nestin, Sox1, Sox2, iNSCs were transformed into Olig2+ spinal cord progenitor cells in 3 weeks by using small molecules. Results: Olig2+ spinal cord progenitor cells could expand for at least five passages and remained in a dividing state over a considerable period of time; in addition, the Olig2+ progenitor cells could mature into O4 and MBP positive oligodendrocytes and HB9 positive motor neurons in a short period. Conclusion: Our research provides a useful protocol for rapid generation of human oligodendrocytes and motor neurons from human iNSCs and demonstrates a progenitor cell model for exploring the origin of motor neurons and oligodendrocyte in vitro, which will contribute to research on the development of spinal cord and regenerative medicine.


Asunto(s)
Células-Madre Neurales , Diferenciación Celular , Humanos , Leucocitos Mononucleares , Neuronas Motoras , Oligodendroglía , Médula Espinal
19.
Macromol Rapid Commun ; 42(3): e2000501, 2021 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-33225568

RESUMEN

The environment-friendly oxidation of cellulose by the 2,2,6,6-tetramethyl-1-piperidinyloxy (TEMPO)/laccase/O2 system is an alternative route with huge potential to prepare cellulose nanofibers. It is found that the concentration of TEMPO significantly affects the oxidation efficiency. An effective method for improving the oxidation effect is to increase the TEMPO concentration and prolong the oxidation time. To clarify the rate-limited step of TEMPO/laccase/O2 oxidation of cellulose, the academically accepted oxidation process is divided into individual pathways. A series of experiments is conducted with laccase and the three forms of organocatalyst (TEMPO, oxoammonium (TEMPO+), and hydroxylamine (TEMPOH)) to simulate individual reactions and calculate the reaction rates. The concentrations of TEMPO and oxoammonium are monitored by EPR spectroscopy. The oxidation rate of TEMPO by laccase varies at different pH conditions, and laccase activity is much higher at pH 4.5. Other reactions without laccase involved express a higher reaction rate when the pH value increased. TEMPO is mainly regenerated through a comproportionation reaction between oxoammonium and hydroxylamine. The acceleration of TEMPO regeneration by laccase is not obvious. The results indicate that the rate-limited reaction in TEMPO/laccase/O2 oxidation is cellulose oxidation by TEMPO+.


Asunto(s)
Lacasa , Nanofibras , Celulosa , Óxidos N-Cíclicos , Lacasa/metabolismo , Oxidación-Reducción
20.
Microb Pathog ; 149: 104282, 2020 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-32479783

RESUMEN

Père David's deer (Elaphurus davidianus) is an emblematic endangered species and regarded as a national treasure, toxoplasmosis is a serious zoonotic parasitic disease for wild animals. Little is known about the prevalence of antibodies to this parasite in Père David's deer. In this study, sera from 43 wild Père David's deer, from Dafeng nature reserve China were tested for antibodies to Toxoplasma gondii by MAT. The investigation showed that antibodies to toxoplasma were detected in 8 of 43 (18.60%, 95% CI 6.97-30.24) samples. Seroprevalence ranged from 15.00% to 21.74% between the different genders, but the difference was not significant according to SPSS analysis (P > 0.05). This report of seroprevalence of antibodies to T. gondii in Père David's deer provides basic data of T. gondii infection data, which is important for controlling and preventing toxoplasmosis in Père David's deer.


Asunto(s)
Ciervos , Toxoplasma , Toxoplasmosis , Animales , China/epidemiología , Femenino , Masculino , Estudios Seroepidemiológicos , Zoonosis
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA