Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Brief Bioinform ; 25(4)2024 May 23.
Artículo en Inglés | MEDLINE | ID: mdl-38975896

RESUMEN

Mechanisms of protein-DNA interactions are involved in a wide range of biological activities and processes. Accurately identifying binding sites between proteins and DNA is crucial for analyzing genetic material, exploring protein functions, and designing novel drugs. In recent years, several computational methods have been proposed as alternatives to time-consuming and expensive traditional experiments. However, accurately predicting protein-DNA binding sites still remains a challenge. Existing computational methods often rely on handcrafted features and a single-model architecture, leaving room for improvement. We propose a novel computational method, called EGPDI, based on multi-view graph embedding fusion. This approach involves the integration of Equivariant Graph Neural Networks (EGNN) and Graph Convolutional Networks II (GCNII), independently configured to profoundly mine the global and local node embedding representations. An advanced gated multi-head attention mechanism is subsequently employed to capture the attention weights of the dual embedding representations, thereby facilitating the integration of node features. Besides, extra node features from protein language models are introduced to provide more structural information. To our knowledge, this is the first time that multi-view graph embedding fusion has been applied to the task of protein-DNA binding site prediction. The results of five-fold cross-validation and independent testing demonstrate that EGPDI outperforms state-of-the-art methods. Further comparative experiments and case studies also verify the superiority and generalization ability of EGPDI.


Asunto(s)
Biología Computacional , Proteínas de Unión al ADN , ADN , Redes Neurales de la Computación , Sitios de Unión , ADN/metabolismo , ADN/química , Proteínas de Unión al ADN/metabolismo , Proteínas de Unión al ADN/química , Biología Computacional/métodos , Algoritmos , Unión Proteica
2.
BMC Bioinformatics ; 25(1): 224, 2024 Jun 25.
Artículo en Inglés | MEDLINE | ID: mdl-38918692

RESUMEN

Promoters are essential elements of DNA sequence, usually located in the immediate region of the gene transcription start sites, and play a critical role in the regulation of gene transcription. Its importance in molecular biology and genetics has attracted the research interest of researchers, and it has become a consensus to seek a computational method to efficiently identify promoters. Still, existing methods suffer from imbalanced recognition capabilities for positive and negative samples, and their recognition effect can still be further improved. We conducted research on E. coli promoters and proposed a more advanced prediction model, iProL, based on the Longformer pre-trained model in the field of natural language processing. iProL does not rely on prior biological knowledge but simply uses promoter DNA sequences as plain text to identify promoters. It also combines one-dimensional convolutional neural networks and bidirectional long short-term memory to extract both local and global features. Experimental results show that iProL has a more balanced and superior performance than currently published methods. Additionally, we constructed a novel independent test set following the previous specification and compared iProL with three existing methods on this independent test set.


Asunto(s)
Escherichia coli , Regiones Promotoras Genéticas , Escherichia coli/genética , Análisis de Secuencia de ADN/métodos , Biología Computacional/métodos , Redes Neurales de la Computación , Algoritmos , Procesamiento de Lenguaje Natural
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA