RESUMEN
The currently circulating Omicron sub-variants are the SARS-CoV-2 strains with the highest number of known mutations. Herein, we found that human angiotensin-converting enzyme 2 (hACE2) binding affinity to the receptor-binding domains (RBDs) of the four early Omicron sub-variants (BA.1, BA.1.1, BA.2, and BA.3) follows the order BA.1.1 > BA.2 > BA.3 ≈ BA.1. The complex structures of hACE2 with RBDs of BA.1.1, BA.2, and BA.3 reveal that the higher hACE2 binding affinity of BA.2 than BA.1 is related to the absence of the G496S mutation in BA.2. The R346K mutation in BA.1.1 majorly affects the interaction network in the BA.1.1 RBD/hACE2 interface through long-range alterations and contributes to the higher hACE2 affinity of the BA.1.1 RBD than the BA.1 RBD. These results reveal the structural basis for the distinct hACE2 binding patterns among BA.1.1, BA.2, and BA.3 RBDs.
Asunto(s)
Enzima Convertidora de Angiotensina 2/química , COVID-19 , Enzima Convertidora de Angiotensina 2/metabolismo , Humanos , Mutación , Peptidil-Dipeptidasa A/metabolismo , Unión Proteica , Receptores Virales/metabolismo , SARS-CoV-2/genéticaRESUMEN
Gene expression by RNA polymerase II (RNAPII) is tightly controlled by cyclin-dependent kinases (CDKs) at discrete checkpoints during the transcription cycle. The pausing checkpoint following transcription initiation is primarily controlled by CDK9. We discovered that CDK9-mediated, RNAPII-driven transcription is functionally opposed by a protein phosphatase 2A (PP2A) complex that is recruited to transcription sites by the Integrator complex subunit INTS6. PP2A dynamically antagonizes phosphorylation of key CDK9 substrates including DSIF and RNAPII-CTD. Loss of INTS6 results in resistance to tumor cell death mediated by CDK9 inhibition, decreased turnover of CDK9 phospho-substrates, and amplification of acute oncogenic transcriptional responses. Pharmacological PP2A activation synergizes with CDK9 inhibition to kill both leukemic and solid tumor cells, providing therapeutic benefit in vivo. These data demonstrate that fine control of gene expression relies on the balance between kinase and phosphatase activity throughout the transcription cycle, a process dysregulated in cancer that can be exploited therapeutically.
Asunto(s)
Quinasa 9 Dependiente de la Ciclina/metabolismo , Terapia Molecular Dirigida , Neoplasias/tratamiento farmacológico , Neoplasias/genética , Proteína Fosfatasa 2/metabolismo , Proteínas de Unión al ARN/metabolismo , Transcripción Genética , Proteínas Supresoras de Tumor/metabolismo , Animales , Línea Celular Tumoral , Quinasa 9 Dependiente de la Ciclina/antagonistas & inhibidores , Resistencia a Antineoplásicos/genética , Regulación Neoplásica de la Expresión Génica , Humanos , Ratones Endogámicos NOD , Fosforilación , Unión Proteica , ARN Polimerasa II/química , ARN Polimerasa II/metabolismo , Especificidad por SustratoRESUMEN
The global severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) pandemic requires effective therapies against coronavirus disease 2019 (COVID-19), and neutralizing antibodies are a promising therapy. A noncompeting pair of human neutralizing antibodies (B38 and H4) blocking SARS-CoV-2 binding to its receptor, ACE2, have been described previously. Here, we develop bsAb15, a bispecific monoclonal antibody (bsAb) based on B38 and H4. bsAb15 has greater neutralizing efficiency than these parental antibodies, results in less selective pressure and retains neutralizing ability to most SARS-CoV-2 variants of concern (with more potent neutralizing activity against the Delta variant). We also selected for escape mutants of the two parental mAbs, a mAb cocktail and bsAb15, demonstrating that bsAb15 can efficiently neutralize all single-mAb escape mutants. Furthermore, prophylactic and therapeutic application of bsAb15 reduced the viral titer in infected nonhuman primates and human ACE2 transgenic mice. Therefore, this bsAb is a feasible and effective strategy to treat and prevent severe COVID-19.
Asunto(s)
Anticuerpos Biespecíficos/inmunología , Anticuerpos Monoclonales/inmunología , Anticuerpos Antivirales/inmunología , SARS-CoV-2/inmunología , Animales , Anticuerpos Biespecíficos/química , Anticuerpos Biespecíficos/genética , Anticuerpos Monoclonales/química , Anticuerpos Monoclonales/genética , Anticuerpos Neutralizantes/genética , Anticuerpos Neutralizantes/inmunología , Anticuerpos Antivirales/química , Anticuerpos Antivirales/genética , COVID-19/inmunología , COVID-19/patología , COVID-19/prevención & control , COVID-19/virología , Clonación Molecular , Modelos Animales de Enfermedad , Relación Dosis-Respuesta Inmunológica , Epítopos , Humanos , Macaca mulatta , Ratones , Pruebas de Neutralización , Ingeniería de Proteínas/métodos , Relación Estructura-ActividadRESUMEN
Solid-state Li-S batteries (SSLSBs) are made of low-cost and abundant materials free of supply chain concerns. Owing to their high theoretical energy densities, they are highly desirable for electric vehicles1-3. However, the development of SSLSBs has been historically plagued by the insulating nature of sulfur4,5 and the poor interfacial contacts induced by its large volume change during cycling6,7, impeding charge transfer among different solid components. Here we report an S9.3I molecular crystal with I2 inserted in the crystalline sulfur structure, which shows a semiconductor-level electrical conductivity (approximately 5.9 × 10-7 S cm-1) at 25 °C; an 11-order-of-magnitude increase over sulfur itself. Iodine introduces new states into the band gap of sulfur and promotes the formation of reactive polysulfides during electrochemical cycling. Further, the material features a low melting point of around 65 °C, which enables repairing of damaged interfaces due to cycling by periodical remelting of the cathode material. As a result, an Li-S9.3I battery demonstrates 400 stable cycles with a specific capacity retention of 87%. The design of this conductive, low-melting-point sulfur iodide material represents a substantial advancement in the chemistry of sulfur materials, and opens the door to the practical realization of SSLSBs.
RESUMEN
Trimethylation of histone H3 lysine 4 (H3K4me3) is associated with transcriptional start sites and has been proposed to regulate transcription initiation1,2. However, redundant functions of the H3K4 SET1/COMPASS methyltransferase complexes complicate the elucidation of the specific role of H3K4me3 in transcriptional regulation3,4. Here, using mouse embryonic stem cells as a model system, we show that acute ablation of shared subunits of the SET1/COMPASS complexes leads to a complete loss of all H3K4 methylation. Turnover of H3K4me3 occurs more rapidly than that of H3K4me1 and H3K4me2 and is dependent on KDM5 demethylases. Notably, acute loss of H3K4me3 does not have detectable effects on transcriptional initiation but leads to a widespread decrease in transcriptional output, an increase in RNA polymerase II (RNAPII) pausing and slower elongation. We show that H3K4me3 is required for the recruitment of the integrator complex subunit 11 (INTS11), which is essential for the eviction of paused RNAPII and transcriptional elongation. Thus, our study demonstrates a distinct role for H3K4me3 in transcriptional pause-release and elongation rather than transcriptional initiation.
Asunto(s)
Histonas , Células Madre Embrionarias de Ratones , Regiones Promotoras Genéticas , ARN Polimerasa II , Elongación de la Transcripción Genética , Terminación de la Transcripción Genética , Animales , Ratones , Regulación de la Expresión Génica , Histona Demetilasas/metabolismo , Histonas/química , Histonas/metabolismo , Metilación , Células Madre Embrionarias de Ratones/metabolismo , Regiones Promotoras Genéticas/genética , ARN Polimerasa II/metabolismoRESUMEN
To separate causal effects of histone acetylation on chromatin accessibility and transcriptional output, we used integrated epigenomic and transcriptomic analyses following acute inhibition of major cellular lysine acetyltransferases P300 and CBP in hematological malignancies. We found that catalytic P300/CBP inhibition dynamically perturbs steady-state acetylation kinetics and suppresses oncogenic transcriptional networks in the absence of changes to chromatin accessibility. CRISPR-Cas9 screening identified NCOR1 and HDAC3 transcriptional co-repressors as the principal antagonists of P300/CBP by counteracting acetylation turnover kinetics. Finally, deacetylation of H3K27 provides nucleation sites for reciprocal methylation switching, a feature that can be exploited therapeutically by concomitant KDM6A and P300/CBP inhibition. Overall, this study indicates that the steady-state histone acetylation-methylation equilibrium functions as a molecular rheostat governing cellular transcription that is amenable to therapeutic exploitation as an anti-cancer regimen.
Asunto(s)
Biocatálisis , Histonas/metabolismo , Oncogenes , Transcripción Genética , Factores de Transcripción p300-CBP/metabolismo , Acetilación , Línea Celular , Cromatina/metabolismo , Proteínas Co-Represoras/metabolismo , Secuencia Conservada , Evolución Molecular , Redes Reguladoras de Genes , Genoma , Histona Desacetilasas/metabolismo , Humanos , Cinética , Metilación , Modelos Biológicos , ARN Polimerasa II/metabolismoRESUMEN
Since SARS-CoV-2 Omicron variant emerged, it is constantly evolving into multiple sub-variants, including BF.7, BQ.1, BQ.1.1, XBB, XBB.1.5 and the recently emerged BA.2.86 and JN.1. Receptor binding and immune evasion are recognized as two major drivers for evolution of the receptor binding domain (RBD) of the SARS-CoV-2 spike (S) protein. However, the underlying mechanism of interplay between two factors remains incompletely understood. Herein, we determined the structures of human ACE2 complexed with BF.7, BQ.1, BQ.1.1, XBB and XBB.1.5 RBDs. Based on the ACE2/RBD structures of these sub-variants and a comparison with the known complex structures, we found that R346T substitution in the RBD enhanced ACE2 binding upon an interaction with the residue R493, but not Q493, via a mechanism involving long-range conformation changes. Furthermore, we found that R493Q and F486V exert a balanced impact, through which immune evasion capability was somewhat compromised to achieve an optimal receptor binding. We propose a "two-steps-forward and one-step-backward" model to describe such a compromise between receptor binding affinity and immune evasion during RBD evolution of Omicron sub-variants.
Asunto(s)
COVID-19 , SARS-CoV-2 , Humanos , SARS-CoV-2/genética , Enzima Convertidora de Angiotensina 2 , Glicoproteína de la Espiga del Coronavirus/genética , AnticuerposRESUMEN
Efficient treatment of acute myeloid leukemia (AML) patients remains a challenge despite recent therapeutic advances. Here, using a CRISPRi screen targeting chromatin factors, we identified the nucleosome-remodeling factor (NURF) subunit BPTF as an essential regulator of AML cell survival. We demonstrate that BPTF forms an alternative NURF chromatin remodeling complex with SMARCA5 and BAP18, which regulates the accessibility of a large set of insulator regions in leukemic cells. This ensures efficient CTCF binding and boundary formation between topologically associated domains that is essential for maintaining the leukemic transcriptional programs. We also demonstrate that the well-studied PHD2-BROMO chromatin reader domains of BPTF, while contributing to complex recruitment to chromatin, are dispensable for leukemic cell growth. Taken together, our results uncover how the alternative NURF complex contributes to leukemia and provide a rationale for its targeting in AML.
Asunto(s)
Proteínas de Drosophila , Leucemia Mieloide Aguda , Humanos , Cromatina/genética , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Leucemia Mieloide Aguda/genética , Proteínas de Drosophila/metabolismo , Ensamble y Desensamble de CromatinaRESUMEN
Natural killer (NK) cells are forced to cope with different oxygen environments even under resting conditions. The adaptation to low oxygen is regulated by oxygen-sensitive transcription factors, the hypoxia-inducible factors (HIFs). The function of HIFs for NK cell activation and metabolic rewiring remains controversial. Activated NK cells are predominantly glycolytic, but the metabolic programs that ensure the maintenance of resting NK cells are enigmatic. By combining in situ metabolomic and transcriptomic analyses in resting murine NK cells, our study defines HIF-1α as a regulator of tryptophan metabolism and cellular nicotinamide adenine dinucleotide (NAD+ ) levels. The HIF-1α/NAD+ axis prevents ROS production during oxidative phosphorylation (OxPhos) and thereby blocks DNA damage and NK cell apoptosis under steady-state conditions. In contrast, in activated NK cells under hypoxia, HIF-1α is required for glycolysis, and forced HIF-1α expression boosts glycolysis and NK cell performance in vitro and in vivo. Our data highlight two distinct pathways by which HIF-1α interferes with NK cell metabolism. While HIF-1α-driven glycolysis is essential for NK cell activation, resting NK cell homeostasis relies on HIF-1α-dependent tryptophan/NAD+ metabolism.
Asunto(s)
NAD , Triptófano , Ratones , Animales , Triptófano/metabolismo , Células Asesinas Naturales , Glucólisis/genética , Hipoxia/metabolismo , Hipoxia de la Célula , Oxígeno/metabolismo , Homeostasis , Subunidad alfa del Factor 1 Inducible por Hipoxia/genética , Subunidad alfa del Factor 1 Inducible por Hipoxia/metabolismoRESUMEN
Candida auris (C. auris) was first discovered in Japan in 2009 and has since spread worldwide. It exhibits strong transmission ability, high multidrug resistance, blood infectivity, and mortality rates. Traditional diagnostic techniques for C. auris have shortcomings, leading to difficulty in its timely diagnosis and identification. Therefore, timely and accurate diagnostic assays for clinical samples are crucial. We developed a novel, rapid recombinase-aided amplification (RAA) assay targeting the 18S rRNA, ITS1, 5.8S rRNA, ITS2, and 28S rRNA genes for C. auris identification. This assay can rapidly amplify DNA at 39 °C in 20 min. The analytical sensitivity and specificity were evaluated. From 241 clinical samples collected from pediatric inpatients, none were detected as C. auris-positive. We then prepared simulated clinical samples by adding 10-fold serial dilutions of C. auris into the samples to test the RAA assay's efficacy and compared it with that of real-time PCR. The assay demonstrated an analytical sensitivity of 10 copies/µL and an analytical specificity of 100%. The lower detection limit of the RAA assay for simulated clinical samples was 101 CFU/mL, which was better than that of real-time PCR (102-103 CFU/mL), demonstrating that the RAA assay may have a better detection efficacy for clinical samples. In summary, the RAA assay has high sensitivity, specificity, and detection efficacy. This assay is a potential new method for detecting C. auris, with simple reaction condition requirements, thus helping to manage C. auris epidemics.
Asunto(s)
Candida auris , Técnicas de Amplificación de Ácido Nucleico , Recombinasas , Técnicas de Amplificación de Ácido Nucleico/métodos , Humanos , Recombinasas/metabolismo , Candida auris/genética , Candidiasis/diagnóstico , Candidiasis/microbiología , Límite de Detección , ADN de Hongos/genética , ADN de Hongos/análisisRESUMEN
Aqueous manganese-ion batteries (AMIBs) are becoming more noticeable because of their excellent theoretical capacity, outstanding safety profile, and cost-effectiveness. However, there aren't many studies on cathode materials appropriate for AMIBs, and the manganese-ion storage mechanisms within these materials have not been thoroughly investigated. Furthermore, the electrochemical performance of existing cathode materials remains suboptimal. Here, Ag0.11V2O5 is designed and synthesized as the cathode material and introduces the combination displacement/intercalation reaction mechanism to the manganese ion storage for the first time. Ag0.11V2O5 demonstrates a capacity retention of 90.3% after 1200 cycles at 5 A g⻹ and achieves a high rate performance of 100.01 mAh g⻹ at 20 A g⻹. This impressive electrochemical performance is attributed to the reaction, which provides more Mn2+ storage sites and generates highly conductive Ag within the electrode. This study presents a novel approach to achieving high-capacity AMIBs.
RESUMEN
MOTIVATION: Computational protein sequence design has been widely applied in rational protein engineering and increasing the design accuracy and efficiency is highly desired. RESULTS: Here, we present ProDESIGN-LE, an accurate and efficient approach to protein sequence design. ProDESIGN-LE adopts a concise but informative representation of the residue's local environment and trains a transformer to learn the correlation between local environment of residues and their amino acid types. For a target backbone structure, ProDESIGN-LE uses the transformer to assign an appropriate residue type for each position based on its local environment within this structure, eventually acquiring a designed sequence with all residues fitting well with their local environments. We applied ProDESIGN-LE to design sequences for 68 naturally occurring and 129 hallucinated proteins within 20 s per protein on average. The designed proteins have their predicted structures perfectly resembling the target structures with a state-of-the-art average TM-score exceeding 0.80. We further experimentally validated ProDESIGN-LE by designing five sequences for an enzyme, chloramphenicol O-acetyltransferase type III (CAT III), and recombinantly expressing the proteins in Escherichia coli. Of these proteins, three exhibited excellent solubility, and one yielded monomeric species with circular dichroism spectra consistent with the natural CAT III protein. AVAILABILITY AND IMPLEMENTATION: The source code of ProDESIGN-LE is available at https://github.com/bigict/ProDESIGN-LE.
Asunto(s)
Proteínas , Programas Informáticos , Secuencia de Aminoácidos , Proteínas/químicaRESUMEN
Electroencephalograms can capture brain oscillatory activities during sleep as a form of electrophysiological signals. We analysed electroencephalogram recordings from full-night in-laboratory polysomnography from 100 patients with Down syndrome, and 100 age- and sex-matched controls. The ages of patients with Down syndrome spanned 1 month to 31 years (median 4.4 years); 84 were younger than 12 years, and 54 were male. From each electroencephalogram, we extracted relative power in six frequency bands or rhythms (delta, theta, alpha, slow sigma, fast sigma, and beta) from six channels (frontal F3 and F4, central C3 and C4, and occipital O1 and O2) during five sleep stages (N3, N2, N1, R and W)-180 features in all. We examined differences in relative power between Down syndrome and control electroencephalograms for each feature separately. During wake and N1 sleep stages, alpha rhythms (8.0-10.5 Hz) had significantly lower power in patients with Down syndrome than controls. Moreover, the rate of increase in alpha power with age during rapid eye movement sleep was significantly slower in Down syndrome than control subjects. During wake and N1 sleep, delta rhythms (0.25-4.5 Hz) had higher power in patients with Down syndrome than controls. During N2 sleep, slow sigma rhythms (10.5-12.5 Hz) had lower power in patients with DS than controls. These findings extend previous research from routine electroencephalogram studies demonstrating that patients with Down syndrome had reduced circadian amplitude-the difference between wake alpha power and deep sleep delta power was smaller in Down syndrome than control subjects. We envision that these brain oscillatory activities may be used as surrogate markers for clinical trials for patients with Down syndrome.
Asunto(s)
Síndrome de Down , Electroencefalografía , Polisomnografía , Fases del Sueño , Humanos , Síndrome de Down/fisiopatología , Masculino , Femenino , Electroencefalografía/métodos , Adulto , Adolescente , Fases del Sueño/fisiología , Niño , Adulto Joven , Preescolar , Lactante , Estudios de Casos y Controles , Ritmo Delta/fisiología , Ondas Encefálicas/fisiología , Sueño/fisiologíaRESUMEN
Veillonella spp. are Gram-negative opportunistic pathogens present in the respiratory, digestive, and reproductive tracts of mammals. An abnormal increase in Veillonella relative abundance in the body is closely associated with periodontitis, inflammatory bowel disease, urinary tract infections, and many other diseases. We designed a pair of primers and a probe based on the 16S rRNA gene sequences of Veillonella and conducted real-time quantitative PCR (qPCR) and droplet digital PCR (ddPCR) to quantify the abundance of Veillonella in fecal samples. These two methods were tested for specificity and sensitivity using simulated clinical samples. The sensitivity of qPCR was 100 copies/µL, allowing for the accurate detection of a wide range of Veillonella concentrations from 103 to 108 CFU/mL. The sensitivity of ddPCR was 11.3 copies/µL, only allowing for the accurate detection of Veillonella concentrations from 101 to 104 CFU/mL because of the limited number of droplets generated by ddPCR. ddPCR is therefore more suitable for the detection of low-abundance Veillonella samples. To characterize the validity of the assay system, clinical samples from children with inflammatory bowel disease were collected and analyzed, and the results were verified using isolation methods. We conclude that molecular assays targeting the 16S rRNA gene provides an important tool for the rapid diagnosis of chronic and infectious diseases caused by Veillonella and also supports the isolation and identification of Veillonella for research purposes. KEY POINTS: ⢠With suitable primer sets, the qPCR has a wider detection range than ddPCR. ⢠ddPCR is suitable for the detection of low-abundance samples. ⢠Methods successfully guided the isolation of Veillonella in clinical sample.
Asunto(s)
Enfermedades Inflamatorias del Intestino , Veillonella , Niño , Humanos , Bioensayo , Enfermedades Inflamatorias del Intestino/diagnóstico , Mamíferos , Reacción en Cadena en Tiempo Real de la Polimerasa , ARN Ribosómico 16S/genéticaRESUMEN
Transcranial ultrasound imaging assumes a growing significance in the detection and monitoring of intracranial lesions and cerebral blood flow. Accurate solution of partial differential equation (PDE) is one of the prerequisites for obtaining transcranial ultrasound wavefields. Grid-based numerical solvers such as finite difference (FD) and finite element methods have limitations including high computational costs and discretization errors. Purely data-driven methods have relatively high demands on training datasets. The fact that physics-informed neural network can only target the same model limits its application. In addition, compared to time-domain approaches, frequency-domain solutions offer advantages of reducing computational complexity and enabling stable and accurate inversions. Therefore, we introduce a framework called FD-embedded UNet (FEUNet) for solving frequency-domain transcranial ultrasound wavefields. The PDE error is calculated using the optimal 9-point FD operator, and it is integrated with the data-driven error to jointly guide the network iterations. We showcase the effectiveness of this approach through experiments involving idealized skull and brain models. FEUNet demonstrates versatility in handling various input scenarios and excels in enhancing prediction accuracy, especially with limited datasets and noisy information. Finally, we provide an overview of the advantages, limitations, and potential avenues for future research in this study.
Asunto(s)
Sistemas de Computación , Cabeza , Ultrasonografía , Redes Neurales de la Computación , CráneoRESUMEN
All-solid-state batteries with lithium metal anodes hold great potential for high-energy battery applications. However, forming and maintaining stable solid-solid contact between the lithium anode and solid electrolyte remains a major challenge. One promising solution is the use of a silver-carbon (Ag-C) interlayer, but its chemomechanical properties and impact on interface stabilities need to be comprehensively explored. Here, we examine the function of Ag-C interlayers in addressing interfacial challenges using various cell configurations. Experiments show that the interlayer improves interfacial mechanical contact, leading to a uniform current distribution and suppressing lithium dendrite growth. Furthermore, the interlayer regulates lithium deposition in the presence of Ag particles via improved Li diffusivity. The sheet-type cells with the interlayer achieve a high energy density of 514.3 Wh L-1 and an average Coulombic efficiency of 99.97% over 500 cycles. This work provides insights into the benefits of using Ag-C interlayers for enhancing the performance of all-solid-state batteries.
RESUMEN
PURPOSE: This study aimed to observe the tilt and decentration of multifocal intraocular lens (IOL) with optic capture in Berger space within 2 years after pediatric cataract surgery. METHODS: This is a prospective observational study. The implantation of multifocal IOL (Tecnis ZMB00) with optic capture in Berger space was performed on 33 patients (48 eyes) with pediatric cataract at Qingdao Eye Hospital. Tilt and decentration of IOL was measured using Scheimpflug system (Pentacam) at 1 month and 2 years postoperatively. RESULTS: All the multifocal IOLs were successfully implanted in Berger space with optic capture and no visually significant complications were detected during the follow-up. The mean tilt of IOLs was 2.779° ± 0.950° in the vertical plane and 2.399° ± 0.898° in the horizontal plane at 1 month postoperatively, and the mean length of the decentration was 0.207 ± 0.081 mm in vertical plane and 0.211 ± 0.090 mm in the horizontal plane. Compared with 1 month after surgery, the angle of tilt decreased by a mean of 0.192° and decentration increased by a mean of 0.014 mm at the vertical meridian at 2 years postoperatively (P = 0.37 and P = 0.27, respectively), meanwhile, tilt increased by 0.265° and decentration increased by 0.012 mm at the horizontal meridian (P = 0.11 and P = 0.22, respectively). CONCLUSIONS: The follow-up results suggest the tilt and decentration of multifocal IOL implantation with optic capture in Berger space remain stable in an acceptable range within 2 years after cataract surgery in children above the age of 5. TRIAL REGISTRATION: The study was approved by the Ethics Committee of Qingdao Eye Hospital, and registered on Chinese Clinical Trial Registry (ChiCTR identifier: 1900023155).
Asunto(s)
Extracción de Catarata , Catarata , Lentes Intraoculares Multifocales , Agudeza Visual , Humanos , Masculino , Femenino , Estudios Prospectivos , Catarata/complicaciones , Catarata/fisiopatología , Preescolar , Niño , Extracción de Catarata/métodos , Extracción de Catarata/efectos adversos , Estudios de Seguimiento , Diseño de Prótesis , Migracion de Implante de Lente Artificial/diagnóstico , Migracion de Implante de Lente Artificial/fisiopatología , Migracion de Implante de Lente Artificial/etiología , Migracion de Implante de Lente Artificial/cirugía , Implantación de Lentes Intraoculares/métodos , LactanteRESUMEN
Ischemic stroke is divided into acute phase, subacute phase, and recovery phase, with different pathological and physiological characteristics manifested at each stage. Among them, immune and inflammatory reactions persist for several days and weeks after ischemia. Ischemic stroke not only triggers local inflammation in damaged brain regions but also induces a disorder in the immune system, thereby promoting neuroinflammation and exacerbating brain damage. Therefore, conducting an in-depth analysis of the interaction between the central nervous system and the immune system after ischemic stroke, intervening in the main factors of the interaction between them, blocking pathological cascades, and thereby reducing brain inflammation have become the treatment strategies for ischemic stroke. This study summarizes and sorts out the interaction pathways between the central nervous system and the immune system. The impact of the central nervous system on the immune system can be analyzed from the perspective of the autonomic nervous system, the hypothalamic-pituitary-adrenal axis(HPA), and local inflammatory stimulation. The impact of the immune system on the central nervous system can be analyzed from the dynamic changes of immune cells. At the same time, the relevant progress in the prevention and treatment of traditional Chinese medicine(TCM) is summarized, so as to provide new insights for the analysis of complex mechanisms of TCM in preventing and treating ischemic stroke.